
IBM Data Virtualization Manager for z/OS
Version 1 Release 1

Developer's Guide

IBM

SC27-9302-00

Contents

Figures.. v

Tables... vii

About this information.. ix

Abstract for IBM Data Virtualization Manager for z/OS Developer's Guide.............. xi

How to send your comments to IBM...xiii
If you have a technical problem..xiii

Chapter 1. Overview.. 1
What's new in IBM Data Virtualization Manager for z/OS Developer's Guide..1

Chapter 2. Spark SQL data access: JDBCThe JDBC driver V3.1................................3
Connecting to a data source using JDBC ..4
JDBC connection properties..5
Error handling.. 19
Debugging and tracing... 20

Connecting to a DRDA database server...21
JDBC performance management.. 23

Buffering data...23
Parallel IO...24
MapReduce...27

JDBC driver APIs..29

Chapter 3. The ODBC driver V3.1..35
Connecting an application to a data source using ODBC ...35
Accessing Double Byte Characters... 36
ODBC connection properties... 37
Connection pooling.. 53
Optimized fetch..53

Chapter 4. DS Client high-level API.. 55
Load modules...55
Configuring access to DS Client for CICS.. 55
AVZCLIEN...56
DVCB control block.. 56
DS Client requests... 59

OPEN...59
SEND... 60
RECV... 61
CLOS... 63
Idle timeout.. 63

API return codes.. 63
DS Client configuration.. 65
Batch program execution.. 66
Example: Using Data Virtualization Manager in a COBOL program..66

 iii

Index.. 73

iv

Figures

1. JDBC driver sends data requests using multiple buffers...23

2. Server returns data one buffer at a time.. 24

3. Parallel IO pre-fetches buffers... 25

4. Materializing prefetched row data.. 26

 v

vi

Tables

1. JDBC connection properties... 5

2. Application connection keywords...36

3. ODBC connection properties.. 37

4. DS Client high-level API load modules...55

 vii

viii

About this information

This information supports IBM Data Virtualization Manager for z/OS (5698-DVM) and contains information
about the drivers and APIs that provide connectivity between Data Virtualization Manager and
applications.

Purpose of this information

This document provides information about the drivers and APIs that provide connectivity between Data
Virtualization Manager and applications.

Who should read this information

This information is intended for application developers and system programmers.

© Copyright IBM Corp. 2017, 2018 ix

x IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

Abstract for IBM Data Virtualization Manager for z/OS
Developer's Guide

This information supports IBM Data Virtualization Manager for z/OS (5698-DVM) and contains information
about the drivers and APIs that provide connectivity between Data Virtualization Manager and
applications.

Purpose of this information

This document provides information about the drivers and APIs that provide connectivity between Data
Virtualization Manager and applications.

Who should read this information

This information is intended for application developers and system programmers.

© Copyright IBM Corp. 2017, 2018 xi

xii IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

How to send your comments to IBM

We appreciate your input on this documentation. Please provide us with any feedback that you have,
including comments on the clarity, accuracy, or completeness of the information.

Important: If your comment regards a technical problem, see instead “If you have a technical problem”
on page xiii.

Send an email to comments@us.ibm.com.

Include the following information:

• Your name and address
• Your email address
• Your phone or fax number
• The publication title and order number:

IBM Data Virtualization Manager for z/OS Developer's Guide
SC27-9302-00

• The topic and page number or URL of the specific information to which your comment relates
• The text of your comment.

When you send comments to IBM®, you grant IBM a nonexclusive right to use or distribute the comments
in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the
issues that you submit.

If you have a technical problem
If you have a technical problem or question, do not use the feedback methods that are listed for sending
comments. Instead, take one or more of the following actions:

• Visit the IBM Support Portal (support.ibm.com).
• Contact your IBM service representative.
• Call IBM technical support.

© Copyright IBM Corp. 2017, 2018 xiii

mailto:comments@us.ibm.com
http://support.ibm.com/

xiv IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

Chapter 1. Overview

To connect between your application and Data Virtualization Manager, you can use the following
methods:

• For Java-based applications, you can use the JDBC driver. See Chapter 2, “Spark SQL data access:
JDBCThe JDBC driver V3.1,” on page 3.

• For non-Java-based applications, you can use the ODBC driver. See Chapter 3, “The ODBC driver V3.1,”
on page 35.

• For high-level language applications, you can use the DS Client high-level API . See Chapter 4, “DS
Client high-level API,” on page 55.

What's new in IBM Data Virtualization Manager for z/OS Developer's Guide
This section describes recent technical changes to IBM Data Virtualization Manager for z/OS.

New and changed information is marked like this paragraph, with a vertical bar to the left of a change.
Editorial changes that have no technical significance are not marked.

New and changed information is marked like this paragraph, with blue graphics at the beginning and end
of the content. Editorial changes that have no technical significance are not marked.

Description Related APARs

The default value for the JDBC parameter CompressionType and the ODBC
parameter Buffer Format (BUFO) is now UNCOMPRESSED. See “JDBC
connection properties” on page 5 and “ODBC connection properties” on
page 37.

PH03261

When connecting to the Data Virtualization Manager server using the JDBC
driver, password phrase authentication is supported. User ID encoding is also
supported between the driver and the Data Virtualization Manager server. See
“JDBC connection properties” on page 5.

PI92952

The ODBC parameters Connection Timeout Value (CNTM) and Operation
Timeout Value (OPTM) are now supported. These parameters are described in
“ODBC connection properties” on page 37.

The DS Client high-level API allows an application running on z/OS to use a
call-level interface to communicate with Data Virtualization Manager to
process SQL requests and to retrieve result sets. Information about using the
API has been added. See Chapter 4, “DS Client high-level API,” on page 55.

© Copyright IBM Corp. 2017, 2018 1

2 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

Chapter 2. Spark SQL data access: JDBCThe JDBC
driver V3.1

The JDBC driver is a Type 4 driver (written in Java) that is used to implement the network protocol for
IBM Data Virtualization Manager for z/OS.

The Java Virtual Machine manages the applications connection to Data Virtualization Manager. Java-
based applications and tools use the JDBC driver to access Data Virtualization Manager applications and
features. Clients connect directly to Data Virtualization Manager without translation.

Requirements
The driver requires Java 1.7 or higher and it is supplied as a .jar archive file. The components that
following are included in the archive file.

The following runtime .jar files are required:

• :dv-jdbc-[version #].jar: The driver core implementation file.
• log4j-api-[version #].jar: The logging framework API file.
• log4j-core-[version #].jar: The logging framework implementation file.

The following sample logging configuration file is included:

• log4j2.xml: A sample logging configuration file.

The following command line utilities are included:

Note: Some system-specific environment utilities are available in two formats; Microsoft Windows
command script (.cmd) and Bash shell script (.sh).

• hashpassword.cmd: Use this utility to generate a hashed format of your text password. You can
include the hashed password in your applications connection string or .ini file. The script prompts the
user for the plain text password. To avoid prompting, the password can be specified as a command-line
argument.

• helpdriver: Displays the help text, including a detailed list of all supported driver properties.
• sysinfo.cmd: Displays local system information.
• LICENSE.txt: Provides product licensing information.
• NOTICE.txt: Lists notices related to this product.
• RELEASE-NOTES.txt: Provides details about optional folders.
• optional-charsets folder: Contains additional character sets. Depending on your set up you may

need to place these jars either on you classpath or endorsed classpath.
• Java API documentation
• Optional runtime.jars
• optional-charsets: Depending on your application, you may need to place these .jars on either your

classpath or endorsed classpath.
• optional-pooling folder: Contains jar files to pool Data Virtualization Manager data sources. To pool

a data source, use:

import org.apache.commons.dbcp2.cpdsadapter.DriverAdapterCPDS;
DriverAdapterCPDS driverAdapterCPDS = new DriverAdapterCPDS();
driverAdapterCPDS.setUrl("jdbc:rs:dv:HOST=...");

• optional-logging folder: Contains optional Log4j jar files for adding additional logging features.

© Copyright IBM Corp. 2017, 2018 3

Connecting to a data source using JDBC

A JDBC connection string is used to load the driver and to indicate the settings that are required to
establish a connection to the data source. These settings are referred to as connection properties. The
connection string is a URL with the following format:

jdbc:rs:dv://host:port;Key=Value;Key=value;...

For example, you can use the following connection string to access virtual tables on your Data
Virtualization Manager server, where host is the network hostname or IP address:

jdbc:rs:dv://host:1200;DatabaseType=DVS;user=userid;password=xxxx

If you prefer not to use the //host:port syntax, you can use the following string:

jdbc:rs:dv:Host=host;Port=1200;DatabaseType=DVS;user=userid;password=xxxx

Additional connection properties can be added to influence the behavior of the driver-server
communication.

Coding a JDBC application
A JDBC application can establish a connection to the data source using the JDBC DriverManager
interface, which is part of the java.sql package. A connection is created by passing the connection
string URL to the DriverManager.getConnection method. Alternate forms of this API allow you to
specify the user and password as separate parameters, or to specify some or all of the connection
properties using the java.util.Properties parameter.

Sample Java code fragment:

final String url = "jdbc:rs:dv://host:1200; DatabaseType=DVS; user=userid;
password=xxx";
final String sql = "SELECT * FROM MY_VIRTUAL_TABLE";
try (final Connection conn = DriverManager.getConnection(url)) {
 try (final PreparedStatement statement = conn.prepareStatement(sql)) {
 try (final ResultSet rs = statement.executeQuery()) {
 // process the result set
 }
 }
}

Coding a Spark application
A Spark application can access a data source using the Spark SQL interface, which is defined in the
org.apache.spark.sql package namespace. The DataFrameReader interface, obtained via
SparkSession.read, is used to load data sets from the data source. Spark SQL uses the JDBC driver to
connect to the Data Virtualization Manager server and access the virtualized data.

Sample Scala code fragment:

val url = "jdbc:rs:dv://host:1200; DatabaseType=DVS; user=userid; password=xxx"
val sql = "MY_VIRTUAL_TABLE"
val spark: SparkSession = ...
val df = spark.read
 .format("jdbc")
 .option("url", url)
 .option("dbtable", sql)
 .load()
// perform data analytics on the dataframe

Running on the same sysplex

Applications executing on the same sysplex as the server are not required to specify logon credentials
when invoking the JDBC driver. Instead, the application can specify empty string settings for the user and

4 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

password to indicate that the current application user ID is to be used. For example, empty values can be
specified in the JDBC connection string as follows:

…; user=;password=; …

When values are specified, the credentials supplied on the driver connection string will be used for server
logon instead of the propagated application user ID information.

JDBC connection properties
The JDBC driver supports the following connection properties. If the same property occurs more than
once in the connection string, the last entry takes precedence. Property names are not case sensitive.

Table 1. JDBC connection properties

Property names Description

AdabasColumnNameCorrelationIds

Alias: ABCN

Support ADABAS column name correlation IDs.

Required: false

Default value: false

Valid values: [true, false]

ApplicationName

Alias: APNA

Application name that is sent to the host as part of logon for
connection tracking.

Required: false (maximum of 16 characters in length)

AuthenticationMechanism

Alias: ATHM

Mechanism for encrypting passwords.

Required: false

Default value: DEFAULT

Valid values: [DEFAULT, AES]

BindInetSocketAddressList

Alias: BISAL

A single local name or IP address to bind a socket, or a
comma-separated IP address list (used with MapReduce),
or AutoDetect to detect NIC IP addresses automatically.

Required: false

Default value: No

CatalogPrefix

Alias: CPFX

Database catalog prefix, SYSPROC for DB2, SQLENG for
DVS, SDBMAP for the others.

Required: false

Default value: SYSPROC

Valid values: [SYSIBM, SYSPROC, SDBMAP, SQLENG]

CertificateHostName

Alias: HostNameInCertificate

Host name for certificate validation when SSL encryption
and validation is enabled.

Required: false

Chapter 2. Spark SQL data access: JDBCThe JDBC driver V3.1 5

Table 1. JDBC connection properties (continued)

Property names Description

Charset

Alias: CS, CodePage, CP, Encoding, ENC

The database character encoding.

To get a complete list the charsets that are available on a
particular JVM, call the Charset.availableCharsets() API,
where charsetName is one of the available Java character
sets.

The list of available character sets that are returned
depends on the specific version and supplier of Java, as
well as the availability of the ICU jar files on the classpath.

Names with the 'x-' prefix indicate that a charset is not
registered at the Internet Assigned Numbers Authority
(IANA). For more information, see https://docs.oracle.com/
javase/8/docs/api/java/nio/charset/Charset.html and
https://ssl.icu-project.org/icu-bin/convexp.

Use the IBM JRE for proper data translation when Charset
specifies a Japanese Code page such as; 930, 939, 1390,
1399 or 5026.

IBM JRE 1.8 or 1.7 is recommended when accessing
IBM-1390 and IBM-1399 mainframe data, and using or
exchanging that data in a Unicode environment.

IBM JRE 1.8 is recommended when accessing IBM-930
and IBM-939 mainframe data, if you do not experience
issues using the IBM-conversion-table-based conversion of
the following EBCDIC characters:

• X'4260' (Minus sign)
• X'444A' (EM Dash)
• X'43A1' (Wave Dash)
• X'447C' (Double vertical line)
• X'426A' (Broken bar)

Required: false

Default value: IBM037

Valid values: For a list of supported character sets, see
“Character sets” on page 18.

CicsTransactionName

Alias: TRNA

CICS transaction name.

Required: false

Default value: (maximum of eight characters in length)

CompressionLevel

Compression level (ZLib only), -1 (default), 1 (best
speed) ... 9 (best compression).

Required: false

Default value: -1

Valid values: [-1, 1, 2, 3, 4, 5, 6, 7, 8, 9]

6 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

https://docs.oracle.com/javase/8/docs/api/java/nio/charset/Charset.html
https://docs.oracle.com/javase/8/docs/api/java/nio/charset/Charset.html
https://ssl.icu-project.org/icu-bin/convexp

Table 1. JDBC connection properties (continued)

Property names Description

CompressionThresholdBytes

Compression threshold in bytes. The driver compresses
data for buffers larger than this size. This value can be post-
fixed with a unit like KB (K) or MB (M). For example, the
following values are all equal: 1048576, 1024 K, 1024 KB,
1 MB.

Required: false

Default value: 0

CompressionType

The type of compression used.

Required: false

Default value: UNCOMPRESSED

Valid values: [ZLIB_NO_WRAP, CMBU, CMBV,
UNCOMPRESSED]

ConnectionType

Connection wire type.

Required: false

Default value: SOCKET

Valid values: [SOCKET, SOCKET_CHANNEL]

CountTraceEnter

Counts JDBC API calls.

Required: false

Default value: false

Valid values: [true, false]

DatabaseRequestModule

Alias: DBRM

Database request module.

Required: false

Default value: OPRXSQ (maximum of eight characters in
length)

DatabaseType

Alias: DBTY

The database type to connect to after connecting to the
Data Virtualization Manager server.

Required: false

Default value: DRDAorDB2

Valid values:

• DRDAorDB2 (the data source type is DB2 on a z/OS
subsystem or DB2 LUW database)

• DVS (the data source type is determined by the virtual
table map definition, and no value is specified for
SUBSYS)

Chapter 2. Spark SQL data access: JDBCThe JDBC driver V3.1 7

Table 1. JDBC connection properties (continued)

Property names Description

EncodeUserName When set to true, the user name is encoded when
establishing the server connection. Support of this feature
can be controlled using server parameters
USERIDENCODEREQUIRE and USERIDENCODEALLOW.

Required: false

Default value: false

Valid values: [true, false]

EncryptionMethod

Encryption method.

Required: false

Default value: NONE

Valid values: [NOENCRYPTION, NONE, SSL]

GetTablesSchemaFilter

Alias: DP

Filter to use for getTables() DB2 metadata schema.

Required: false

HexDumpBytesPerLine

Bytes per line in the hexadecimal dump.

Required: false

Default value: 16

HexDumpBytesPerWord

Bytes per word in the hexadecimal dump.

Required: false

Default value: 4

Host
Host name or IP address.

Required: true

IniFile

Alias: INI

Loads properties from this INI file (overrides IniFileEnvVar).

Required: false.

IniFileCharset

Alias: INICS

The INI file Charset.

Required: false

Default value: UTF-8.

IniFileDataSourceName

Alias: DSN

Loads properties from a section name to an INI file.

Required: false.

IniFileEnvVar

Alias: INIEV

Loads properties from the INI file to this environment
variable.

Required: false.

Default value: DV_INI

InitialCurrentDegree

Alias: SEDG

Initial current degree (DB2).

Required: false

Valid values: [ANY, 1]

8 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

Table 1. JDBC connection properties (continued)

Property names Description

InitialCurrentPackageSet

SEPK

Initial current package set (DB2).

Required: false

InitialCurrentRules

Alias: SERL

Initial current rules (DB2).

Required: false

Valid values: [DB2, STD]

InitializationString
Initialization string, use ';' to separate statements, wrap the
string in '(' and ')' when used in a connection string.

Required: false

JaasLoginConfigFile

Alias: LOGINCFG

Pathname of the JAAS login.conf file (effectively sets the
java.security.auth.login.config system property).

Required: false

KerberosConfigFile

Alias: KRBCFG
Pathname of the krb5.conf file (effectively sets the
java.security.krb5.conf system property).

Required: false

KerberosKdc

Alias: KDC
Effectively sets the java.security.krb5.kdc system property.

Required: false

KerberosRealm

Alias: KRBREALM
Effectively sets the java.security.krb5.realm system
property.

Required: false

KerberosServerPrincipal

Alias: KSPN
Kerberos Server principal name; required when accessing
the Kerberos server to retrieve a token.

Required: false

KeyPassword

Alias: KP

The SSL key password.

Required: false

KeyStore

Alias: KS

The SSL keystore.

Required: false

KeyStorePassword

Alias: KSP

The SSL keystore password.

Required: false

Chapter 2. Spark SQL data access: JDBCThe JDBC driver V3.1 9

Table 1. JDBC connection properties (continued)

Property names Description

LegacySqlPrepareEnabled

Alias: WRPR
This flag controls the behavior of SQLPrepare for non-DB2
data sources such as ADABAS, VSAM, IMSDB, and VSAM
CICS. When this keyword is set to true (which is the
default), a request is always sent to the host at SQLPrepare
time to obtain metadata for the SQL statement. For
applications that access non-DB2 data sources and do NOT
require metadata after the SQLPrepare, it is recommended
to set WRPR to false for better performance since this will
eliminate a network roundtrip whenever a SQLPrepare is
executed.

Required: false

Default value: true

Valid values: [true, false]

LGID

Alias: LanguageID

This setting is for backward compatibility. It is
recommended to use Charset instead.

Each language code corresponds to a charset used for byte
conversion. If a key has no value, the driver will use the
default. The mappings are as follows:

{ARB=IBM420, CHS=, CHT=, DAN=IBM01142,
DEU=IBM01141, DFT=IBM037, ENC=IBM1047,
ENG=IBM285, ENU=IBM037, ESN=IBM01145,
ESP=IBM284, FIN=IBM01143, FRA=IBM01147,
FRC=IBM037, ISL=IBM01149, ITA=IBM01144,
JNL=IBM1390, JNX=IBM1399, JPL=IBM5026,
JPX=IBM5035, KOR=IBM037, KRN=x-IBM833, MDI=,
NGN=IBM01142, NLD=IBM037, NOR=IBM01142, PPS=,
PTG=IBM037, SVE=IBM278, SWE=IBM01143,
TUR=IBM1026}

Required: false

Default value: ENU

Valid values (31): [ARB, CHS, CHT, DAN, DEU, DFT, ENC,
ENG, ENU, ESN, ESP, FIN, FRA, FRC, ISL, ITA, JNL, JNX,
JPL, JPX, KOR, KRN, MDI, NGN, NLD, NOR, PPS, PTG, SVE,
SWE, TUR]

LogConfiguration

Alias: LOGCONFIG

Sets the Log4j 2 configuration file.

Required: false

LogThreadsState

Alias: LTS

Logs the state of a thread.

Required: false

Default value: false

Valid values: [true, false]

LogThreadsStatePeriodMillis

Logs the state period for a thread in milliseconds.

Required: false

Default value: 1000

10 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

Table 1. JDBC connection properties (continued)

Property names Description

LoginTimeoutMillis

Login timeout in milliseconds (0 = system default if there is
one, or no limit.)

Required: false

Default value: 0

LoginTimeoutSeconds

Alias: LOGINTIMEOUT

Login timeout in seconds.

Required: false

Default value: 0

MapReduceClient

Alias: MRC, MapReduce

Use MapReduceClient (MRC) to read query results in
parallel from different connections. When enabled, the
driver creates one master connection and N worker
connections (instances of JDBC connections).

Required: false

Default value: false

Valid values: [true, false, list]

To distribute MapReduce on a single server, select from the
following methods:

• Set MapReduceClient to true (MRC=true). The
MapReduceConnectionCount defaults to the number of
CPU cores discovered (for example: MRCC=10)

• Set MRC=(host, port, taskCount)

To distribute MapReduceClient over multiple servers, set
MapReduceClient: MCR=(host1, port1,
taskCount1), (host2, port2, taskCount2),...

If you are using MapReduceClient with RDBMS or IMS, you
must complete the metadata repository configuration
requirements. See "MapReduce" in the Administrator's
Guide.

MapReduceClientCount

Alias: MRCC

The single-connection MapReduceClientCount. This value is
only set for use with MRCN. The MRCC default setting is 0.

Required: false

Default value: 0

Chapter 2. Spark SQL data access: JDBCThe JDBC driver V3.1 11

Table 1. JDBC connection properties (continued)

Property names Description

MapReduceClientNumber

Alias: MRCN

To enable highly-parallel client applications to control
concurrent MapReduce connections, from which queries
are executed as a single thread, set the
MapReduceClientCount (MRCN) value for each
MapReduceClientCount (MRCC).

The following example shows a connection string used to
connect to the first of four available connections:

jdbc:rs:dv://host:port;DBTY=DVS;
PWD=xxx;UID=xxx;
MXBU=4MB;
MapReduceClientCount=4;
MapReduceClientNumber=1

To disable this feature, set MapReduceClientCount to 0
(MRCC=0) and set MapReduceClient to false (MRC=false).

MapReduceFillValueMaximumInitialSize

Alias: MRFVMIS

This value specifies the initial capacity of the result row
pre-fetch cache for a given buffer that is used after the
MapReduce or Parallel IO read queue exceeds the value set
for MapReduceFillValueThreshold.

Required: false

Default value: 20,000 (rows per buffer)

MapReduceFillValueThreshold

Alias: MRFVT

When using Parallel IO or MapReduce, this value specifies
the number of buffers on the parallel IO thread that must
be exceeded before pre-filling the column values
(converting mainframe row bytes to Java object
representations).

Required: false

Default value: -1 (off).

MapReducePollTimeOutMillis

Alias: MRPTO

The MapReduce and Parallel IO inter-thread poll timeout, in
milliseconds.

Required: false

Default value: 50

MapReduceQueueStats

Alias: MRQS

Gathers statistics for MapReduce result sets.

Required: false

Default value: false

Valid values: [true, false]

MaximumBufferSize

Alias: MXBU

Maximum server-side communication buffer size in bytes.
This value can be post-fixed with a unit like KB (K) or MB
(M). For example, the following values are all equal:
1048576, 1024 K, 1024 KB, 1 MB. The minimum value is
40960.

Required: false

Default value: 262144

12 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

Table 1. JDBC connection properties (continued)

Property names Description

MaximumFieldSize

Aliases: MFS, MaxFieldSize

Maximum field size to return.

Required: false

Default value: 2147483647

MaximumRows

Alias: MR

Maximum number of rows to return.

Required: false

Default value: 0

MetaDataCharset

Alias: MDCS

The database metadata character encoding. Available
encodings depends on the runtime. See the Charset
property.

Required: false

Default value: IBM037

NetworkTimeoutMillis

Alias: NTOM

Network timeout in milliseconds.

Required: false

Default value: 0

NetworkTimeoutSeconds

Alias: NETWORKTIMEOUT

Network timeout in seconds.

Required: false

Default value: 0

ParrallelIoBufferCount

Alias: PIOBC

When the value of the Parallel IO buffer count is > 0 (where
the buffer size = MXBU), a background thread reads the
rows from the server as the main thread consumes them.
This memory is re-usable.

For example, if MXBU is set to 4 MB and PIOBC is set to 10,
the driver uses 40 MB of memory as the read-ahead buffer
(10 x 4 MB buffers).

Required: false. Default value: 0.

Password

Alias: PWD, PassPhrase

Password or password phrase.

Required: false

PasswordToUpperCase

Alias: UCLC

Converts passwords to uppercase. This property is ignored
when a password phrase has been specified.

Required: false

Default value: true

Valid values: [true, false]

Plan

The DB2 plan name used for a DB2 connection. This is used
when the subsystem is set to a valid DB2 subsystem name.

Required: false

Default value: SDBC1010 (maximum of eight characters in
length)

Chapter 2. Spark SQL data access: JDBCThe JDBC driver V3.1 13

Table 1. JDBC connection properties (continued)

Property names Description

Port

Server port.

Required: false

Default value: 1200

PrepareMetadataSQL Determines how the SQL statement metadata calls are
handled.

Required: false

Default value: false

Valid values: [true, false]

If set to true, the driver prepares the SQL statements for
metadata calls.

If set to false, the driver builds and executes the SQL
statements for metadata calls dynamically, which can be
susceptible to SQL injection attacks.

QueryTimeoutMillis

Alias: QTOM

Query timeout in milliseconds.

Required: false

Default value: 0

QueryTimeoutSeconds

Alias: QUERYTIMEOUT

Query timeout in seconds.

Required: false

Default value: 0

SelectForReadOnly

Alias: RO

Appends FOR FETCH ONLY to JDBC read-only SQL query
statements.

Required: false

Default value: true

Valid values: [true, false]

ServerCertificateStrategy

Server certificate strategy.

Required: false

Default value: Validate

Valid values: [Validate, AcceptSelfSigned, Trust]

ShadowServerCompatibility Enable compatibility with older Shadow servers.

Required: false

SocketKeepAlive

Alias: SKA

Socket keep alive.

Required: false

Default value: false

Valid values: [true, false]

14 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

Table 1. JDBC connection properties (continued)

Property names Description

SocketReceiveBufferSize

Alias: SRBS

Socket receive buffer size hint in bytes. This value can be
post-fixed with a unit like KB (K) or MB (M). For example,
the following values are all equal: 1048576, 1024 K, 1024
KB, 1 MB.

Required: false

Default value: 0

SocketSendBufferSize

Alias: SSBS

Socket send buffer size hint in bytes. This value can be
post-fixed with a unit like KB (K) or MB (M). For example,
the following values are all equal: 1048576, 1024 K, 1024
KB, 1 MB.

Required: false

Default value: 0

SocketTcpNoDelay

Alias: STCPND

Socket TCP NoDelay.

Required: false

Default value: false

Valid values: [true, false]

SqlAuthorizationId

Alias: ALUS

SQL authorization ID.

Required: false

SslContextProtocol

Alias: SSLPROTOCOL

SSL context protocol.

Required: false

Default value: TLS

StrictJdbcCompliance Indicates whether the driver complies strictly with the
JDBC spec.

Required: false

Default value: false

Valid values: [true, false]

SubSystem

Alias: SUBSYS

The database subsystem name.

If the data source is DB2 (DatabaseType=DRDAorDB2),
enter the DB2 subsystem name as it exists on the
mainframe.

If the data source is a non-DB2 database (where TYPE
must be Member, Group, or LUW), enter the name as it
exists in the NAME field of the DEFINE entry in the server
configuration member, AVZSIN00.

If the data source is DVS, the subsystem name should be
set to NONE.

Required: false

Default value: NONE

Valid values: 1 - 4 alphanumeric characters

Chapter 2. Spark SQL data access: JDBCThe JDBC driver V3.1 15

Table 1. JDBC connection properties (continued)

Property names Description

ThrowUnsupportedAll

[Development tool] Throws an exception when an API is not
supported.

Required: false

Default value: true

Valid values: [true, false]

TraceBrowseAppender To collect JDBC driver server trace log information, add the
name of the collection appender to the log4j configuration
file.

The following example shows the collection name tag:

<Appenders>
 ... other appenders here ...
 <Collection name="TB">
 <PatternLayout>
 <Pattern>%d %-5level [%t][%logger]
 %msg%n%throwable</Pattern>
 </PatternLayout>
 </Collection>
 </Appenders>
 <Loggers>
 <Root level="...">
 ... other appenders here ...
 <AppenderRef ref="TB" />
 </Root>

Where the name of the collection appender (TB in this
example) is the name you choose.

Add the TraceBrowseAppender setting to the JDBC
connect string to provide the collection appender name in
the log4j2.xml config file to the server. For example,
TraceBrowseAppender=TB.

The server parameter TRACE EXTERNAL TRACE DATA
(TRACEEXTERNTRACEDATA) must also be enabled.

Required: false

TruncateCallLiteral

Alias: TRLT

Truncate CALL string.

Required: false

Default value: true

Valid values: [true, false]

TrustStore
The SSL trust store.

Required: false

TrustStorePassword
The SSL trust store password.

Required: false

16 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

Table 1. JDBC connection properties (continued)

Property names Description

UpperCaseAllCharacters This field controls if all character data sent to the host
should be converted to upper case or not. If this field is set
to true, then all character data will be converted to upper
case. If this field is set to false, then character data will not
be converted to upper case.

Required: false

Default value: false

Valid values: [true, false]

UpperCaseNonLiterals This flag controls if all non-literal values in SQL statements
passed to the driver should be converted to upper case or
not. If this flag is set to true, then strings not in single or
double quotes will be converted to upper case.

Required: false

Default value: true

Valid values: [true, false]

URL Use to specify connection properties.

Required: false

user

Alias: UID

The user name or identifier.

UserParm

Alias: UserParm

Sent in the logon information to complete logon to a host
security system and/or database. Maximum of 100
characters in length.

ValidateServerCertificate

Validate server certificate or not.

Required: false

Default value: true

Valid values: [true, false]

VpdGroupMemberCount Virtual Parallel Data group member count.

Required: false

Default value: 0-255

VpdGroupName Virtual Parallel Data group name. Maximum of eight
characters in length.

Required: false

Default value:

VpdGroupOpenTimeoutSeconds Virtual Parallel Data group open timeout in seconds.

Required: false

Default value: 0

Chapter 2. Spark SQL data access: JDBCThe JDBC driver V3.1 17

Table 1. JDBC connection properties (continued)

Property names Description

VpdIoThreadCount Virtual Parallel Data I/O thread count.

Required: false

Default value: 0-255

XaEnabled

Alias: XAEN
Set to true to enable XA transactions.

Required: false

Default value: false

Valid values: [true, false]

XaTransactionManager

Alias: XAOP
The type of transaction manager used for XA operations.

Required: false

Valid value: JTS

Character sets

The list of available character sets that are returned depends on the specific version and supplier of Java,
as well as the availability of the ICU jar files on the classpath.

The following Charsets (CS) are supported:

Charsets

Adobe-Standard-Encoding,

Big5, Big5-HKSCS, BOCU-1,

CESU-8, cp1363, cp851,

EUC-JP, EUC-KR,

GB18030, GB2312, GB_2312-80, GBK,

hp-roman8, HZ-GB-2312,

IBM-Thai, IBM00858, IBM01140, IBM01141, IBM01142, IBM01143, IBM01144, IBM01145,
IBM01146, IBM01147, IBM01148, IBM01149, IBM037, IBM1026, IBM1047, IBM273, IBM277,
IBM278, IBM280, IBM284, IBM285, IBM290, IBM297, IBM420, IBM424, IBM437, IBM500,
IBM775, IBM850, IBM852, IBM855, IBM857, IBM860, IBM861, IBM862, IBM863, IBM864,
IBM865, IBM866, IBM868, IBM869, IBM870, IBM871, IBM918, ISO-2022-CN, ISO-2022-CN-
EXT, ISO-2022-JP, ISO-2022-JP-1, ISO-2022-JP-2, ISO-2022-KR, ISO-8859-1,
ISO-8859-10, ISO-8859-13, ISO-8859-14, ISO-8859-15, ISO-8859-2, ISO-8859-3,
ISO-8859-4, ISO-8859-5, ISO-8859-6, ISO-8859-7, ISO-8859-8, ISO-8859-9,

JIS_X0201, JIS_X0212-1990,

KOI8-R, KOI8-U, KSC_5601,

macintosh,

SCSU, Shift_JIS,

TIS-620,

US-ASCII, UTF-16, UTF-16BE, UTF-16LE, UTF-32, UTF-32BE, UTF-32LE, UTF-7, UTF-8,

windows-1250, windows-1251, windows-1252, windows-1253, windows-1254,
windows-1255, windows-1256, windows-1257, windows-1258, windows-31j,

18 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

Charsets

x-Big5-HKSCS-2001, x-Big5-Solaris, x-compound-text, x-ebcdic-xml-us, x-euc-jp-
linux, x-EUC-TW, x-euc-tw-2014, x-eucJP-Open, x-ibm-1047-s390, x-
ibm-1125_P100-1997, x-ibm-1129_P100-1997, x-ibm-1130_P100-1997, x-
ibm-1131_P100-1997, x-ibm-1132_P100-1998, x-ibm-1133_P100-1997, x-
ibm-1137_P100-1999, x-ibm-1140-s390, x-ibm-1141-s390, x-ibm-1142-s390, x-ibm-1143-
s390, x-ibm-1144-s390, x-ibm-1145-s390, x-ibm-1146-s390, x-ibm-1147-s390, x-
ibm-1148-s390, x-ibm-1149-s390, x-ibm-1153-s390, x-ibm-1154_P100-1999, x-
ibm-1155_P100-1999, x-ibm-1156_P100-1999, x-ibm-1157_P100-1999, x-
ibm-1158_P100-1999, x-ibm-1160_P100-1999, x-ibm-1162_P100-1999, x-
ibm-1164_P100-1999, x-ibm-1250_P100-1995, x-ibm-1251_P100-1995, x-
ibm-1252_P100-2000, x-ibm-1253_P100-1995, x-ibm-1254_P100-1995, x-
ibm-1255_P100-1995, x-ibm-1256_P110-1997, x-ibm-1257_P100-1995, x-
ibm-1258_P100-1997, x-ibm-12712-s390, x-ibm-12712_P100-1998, x-ibm-1373_P100-2002,
x-ibm-1386_P100-2001, x-ibm-16684_P110-2003, x-ibm-16804-s390, x-
ibm-16804_X110-1999, x-ibm-25546, x-ibm-33722_P12A_P12A-2009_U2, x-ibm-37-s390, x-
ibm-4517_P100-2005, x-ibm-4899_P100-1998, x-ibm-4909_P100-1999, x-
ibm-4971_P100-1999, x-ibm-5123_P100-1999, x-ibm-5351_P100-1998, x-
ibm-5352_P100-1998, x-ibm-5353_P100-1998, x-ibm-803_P100-1999, x-
ibm-813_P100-1995, x-ibm-8482_P100-1999, x-ibm-901_P100-1999, x-ibm-902_P100-1999,
x-ibm-9067_X100-2005, x-ibm-916_P100-1995, x-IBM1006, x-IBM1025, x-IBM1046, x-
IBM1097, x-IBM1098, x-IBM1112, x-IBM1122, x-IBM1123, x-IBM1124, x-IBM1153, x-
IBM1363, x-IBM1364, x-IBM1371, x-IBM1381, x-IBM1383, x-IBM1388, x-IBM1390, x-
IBM1399, x-IBM300, x-IBM33722, x-IBM720, x-IBM737, x-IBM833, x-IBM834, x-IBM856,
x-IBM867, x-IBM874, x-IBM875, x-IBM921, x-IBM922, x-IBM930, x-IBM933, x-IBM935, x-
IBM937, x-IBM939, x-IBM942, x-IBM942C, x-IBM943, x-IBM943C, x-IBM948, x-IBM949, x-
IBM949C, x-IBM950, x-IBM954, x-IBM964, x-IBM970, x-IBM971, x-IMAP-mailbox-name, x-
iscii-be, x-iscii-gu, x-iscii-ka, x-iscii-ma, x-iscii-or, x-iscii-pa, x-iscii-ta,
x-iscii-te, x-ISCII91, x-ISO-2022-CN-CNS, x-ISO-2022-CN-GB, x-iso-8859-11, x-
JIS0208, x-JIS7, x-JIS8, x-JISAutoDetect, x-Johab, x-LMBCS-1, x-mac-
centraleurroman, x-mac-cyrillic, x-mac-greek, x-mac-turkish, x-MacArabic, x-
MacCentralEurope, x-MacCroatian, x-MacCyrillic, x-MacDingbat, x-MacGreek, x-
MacHebrew, x-MacIceland, x-MacRoman, x-MacRomania, x-MacSymbol, x-MacThai, x-
MacTurkish, x-MacUkraine, x-MS932_0213, x-MS950-HKSCS, x-MS950-HKSCS-XP, x-
mswin-936, x-PCK, x-SJIS_0213, x-UnicodeBig, x-UTF-16LE-BOM, X-UTF-32BE-BOM, X-
UTF-32LE-BOM, x-UTF16_OppositeEndian, x-UTF16_PlatformEndian, x-
UTF32_OppositeEndian, x-UTF32_PlatformEndian, x-windows-50220, x-windows-50221, x-
windows-874, x-windows-949, x-windows-950, x-windows-iso2022jp]

Error handling
The JDBC driver reports errors to an application by throwing SQL exceptions, each of which contains the
following details.

• Description of the likely cause of the error, prefixed by the component that generated the error.
• Native error code, if applicable.

All errors, including those generated by the driver framework or the driver layer, have the following
format:

[DV][JDBC Driver][version #]message

To fully interpret the error message, it may be necessary to refer to the JDBC documentation for possible
resolutions, or refer to the database management system documentation to interpret error codes.

Chapter 2. Spark SQL data access: JDBCThe JDBC driver V3.1 19

Debugging and tracing
Enable JDBC driver logging in the Apache Log4j configuration file.

About this task

The JDBC driver implements logging by using Apache Log4j2 (https://logging.apache.org/log4j/2.x/).

Note: To include JDBC driver logging information in the Studio Server Trace pane, enable the JDBC
TraceBrowseAppender property.

Procedure

Open the Log4j configuration file (https://logging.apache.org/log4j/2.x/manual/configuration.html) and
choose one of the following methods to implement logging:

• Add the directory and folder location to the CLASSPATH
• Set the LogConfiguration connection property to a file path or URI that points to a Log4j

configuration file

The following is a sample log4j2.xml configuration file that is included in the JDBC driver installation
ZIP file:

<?xml version="1.0" encoding="UTF-8"?>
<Configuration status="WARN" monitorInterval="5">
 <Appenders>
 <Console name="Console" …>
 <PatternLayout … />
 </Console>
 <RollingRandomAccessFile name="RollingFile" …>
 <PatternLayout>
 <Pattern>…</Pattern>
 </PatternLayout>
 <Policies>
 <SizeBasedTriggeringPolicy … />
 </Policies>
 </RollingRandomAccessFile>
 </Appenders>
 <Loggers>
 <Root level="WARN">
 <AppenderRef ref="Console" />
 <AppenderRef ref="RollingFile" />
 </Root>
 <Logger name="com.rs.jdbc.dv.DvDataSource"
 level="WARN" />
 <Logger name="com.rs.jdbc.dv.log.DvThreadsStateLogger"
 level="WARN" />
 <Logger name="javax.management"
 level="WARN" />
 <Logger name="sun.rmi"
 level="WARN" />
 <Logger name="com.rs.dv.util.LoggerEnvironmentReporter"
 level="OFF" />
 </Loggers>
</Configuration>

The sample configuration file does not log anything if the status of the entire configuration and level of the
root logger are set to WARN (<Configuration status=="WARN">;<Root level="WARN">). Setting
the configuration’s level to TRACE causes Log4j to log about itself being configured; this is useful when
debugging the configuration file is necessary. Setting the root logger level to DEBUG causes the driver to
log more detailed information, and setting the level to TRACE will allow the tracing of JDBC API entries
and exits. For more information, refer to the following URL:

 https://logging.apache.org/log4j/2.x/manual/flowtracing.html

Each driver implementation class has a logger. The logger name is derived from the fully qualified class
name. The logging levels for each of these loggers may be changed independently.

20 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

http://logging.apache.org/log4j/2.x/
http://logging.apache.org/log4j/2.x/manual/configuration.html
https://logging.apache.org/log4j/2.x/manual/flowtracing.html

By default, setting the root level to TRACE results in logging hexadecimal dumps of the buffers. To enable
API logging while disabling buffer tracing, use a Log4j filter.

The following example shows how to define the filter DV.BUFFER to the JDBC configuration file:

<Loggers>
…
 <Filters>
 <MarkerFilter marker="DV.BUFFER"
 onMatch="DENY" onMismatch="NEUTRAL" />
 </Filters>
</Loggers>

Filtering may also be applied to the communication and SQL operations by setting appropriate values for
the marker attribute. You may choose from the following filters:

• DV.BUFFER

– DV.BUFFER.HEADER
– DV.BUFFER.PARAM
– DV.BUFFER.COMPRESSED
– DV.BUFFER.DECOMPRESSED
– DV.BUFFER.UNCOMPRESSED
– DV.BUFFER.DESCRIPTION
– DV.BUFFER.DESCRIPTION.CONNECT

• DV.COMM

– DV.COMM.SOCKET

• DV.SQL

– DV.SQL.PREPARE.USER
– DV.SQL.BATCH.USER
– DV.SQL.BATCH.SERVER
– DV.SQL.QUERY.USER
– DV.SQL.QUERY.SERVER
– DV.SQL.QUERY.POST
– DV.SQL.UPDATE.USER
– DV.SQL.UPDATE.SERVER

Connecting to a DRDA database server
To connect to a DRDA (DB2 and Oracle) database server, include the application information on the
system CLASSPATH.

About this task

To connect to the database, you need add the CLASSPATH to your system. In your application, you need
to define the connection string and the connection.

Procedure

1. Add the CLASSPATH.

To load the JDBC driver, the Java Virtual Machine requires that the location and name of the driver and
Log4j implementation files be included in the system CLASSPATH. For example:

install_dir/lib/dv-jdbc-[version #].jar
install_dir/lib/log4j-api-[version #].jar

Chapter 2. Spark SQL data access: JDBCThe JDBC driver V3.1 21

install_dir/lib/log4j-core-[version #].jar
install_dir/lib/

All jar files in the lib folder must be in the CLASSPATH, and the folder that contains the log4j2.xml
file must be in the CLASSPATH.

On the Windows command line, you can choose to include all files in the install_dir/lib, or you
can choose to list each jar file that you want to include. The following example shows how to include
all files:

classpath install_dir/lib/*;install_dir/lib;
codeph;

On *Nix:

classpath install_dir/lib/*:install_dir/lib

To list each jar file individually, rather than using install_dir/lib/*, pass the database connection
information to the driver manager in the form of a connection URL. Using the following URL format as
an example, you can substitute values that are specific to your database management system:

jdbc:rs:dv://host-name:port-number[;property=value[;…]]

Substitute the host-name with the IP address or computer name of the server that hosts the
database management system. Substitute the port-number with the TCP/IP port number on which
the Data Virtualization Manager server listens for incoming requests. Multiple connection properties
must be separated by semicolons.

Note: On the command line on Windows, if a property value contains a semi-colon, you must enclose
the whole connection string in double quotation marks. On *Nix, the same is true for the colon
character.

2. Define the connection string and the connection in your application.

The JDBC driver uses the JDBC Driver Manager to connect to a database server. To connect to the
database management system, use the DriverManager.getConnection() method to pass the
connection URL as the argument, as shown in the following example:

Connection conn = DriverManager.getConnection(
"jdbc:rs:dv://host-name:port-number;
DatabaseType=DRDAorDB2;
user=user-id;password=user-password;
subsystem=my-subsystem;
Charset=CharsetName");

Note: Different database management systems have different required and optional connection
properties. You must understand the DBMS to which you want to connect in order to properly
configure the JDBC driver.

By default, the DatabaseType property is DRDAorDB2, which defaults the subsystem value to NONE.
To specify your subsystem, set the value accordingly.

The Charset must match the SQLENGDFLTCCSID parameter setting of the Data Virtualization
Manager server, and it must be compatible with the MCCSID of the target DB2 subsystem.

To connect to the Data Virtualization Manager server, use the following syntax:

Connection conn = DriverManager.getConnection(
"jdbc:rs:dv://host-name:port-number;
DatabaseType=DVS;
user=user-id;password=user-password;"
Charset=CharsetName");

You can use the hashpassword.cmd utility to generate a hashed format of your text password. You
can include the hashed password in the connection string or .ini file for your application. The script

22 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

prompts the user for the plain text password. To avoid prompting, the password can be specified as a
command-line argument.

For information on interface methods, see “JDBC driver APIs” on page 29

JDBC performance management
This section describes how you can improve JDBC driver performance when sending and receiving data to
and from the client.

To optimize JDBC driver performance, choose from the following options:

Buffering data
When sending large amounts of data to the client or the server, one way to optimize performance is by
choosing the appropriate size that the driver uses to divide and send the buffers of data.

The JDBC driver communicates with a server using the Communication Buffer (CMBU) protocol. CMBU
specifies that all communications occur with one or more buffers. The maximum size of a buffer is set
using the MaximumBufferSize(MXBU) JDBC property and the NETWORKBUFFERSIZE parameter in the
server configuration file. You can use the MaximumBufferSize JDBC property as a basic building block
for controlling performance.

Network latency that occurs between the client and the server can have a negative impact on
performance. When setting the MaximumBufferSize value, consider the distance between the client
and the server. The buffer size that works best for clients and servers that are closer in proximity (low
latency), may not be the buffer size that works best for clients and servers that are not close in proxmity
(high latency).

When you execute a large SQL INSERT statement, or a batch of INSERT statements, the statements are
divided into multiple data buffers that are no larger than the size you specify for MaximumBufferSize.
The buffers are then sent to the server. The following illustration shows the buffers of INSERT statements
being sent to the server:

Figure 1. JDBC driver sends data requests using multiple buffers

The actual MaximumBufferSize value that the JDBC driver uses is the result of a handshake between
the driver and the server. When the driver logs on to the server, it requests that the server support the
given MaximumBufferSize. In the logon reply, the server tells the driver the actual buffer size value that
the driver must use (NETWORKBUFFERSIZE). This value may be less than the driver requested value.

After executing a SQL SELECT statement, the server divides and returns the requested rows of data in
buffers that have been sized appropriately, one buffer at a time. The following illustration shows the
server sending the client rows of data in a single buffer:

Chapter 2. Spark SQL data access: JDBCThe JDBC driver V3.1 23

Figure 2. Server returns data one buffer at a time

The client can call next() on the result set until all rows are read. When the next() call no longer has a
row to read from the buffer, the driver issues a request to the server for another row buffer. This cycle
continues until the client reads all rows from all buffers. This happens transparently to the JDBC call site.
The following code sample shows how this is implemented:

Connection con = DriverManager.getConnection(
 "jdbc:rs:dv://host:port;Key=Value;Key=Value;",
 username,
 password);
 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery("SELECT a, b, c FROM Table1");

 while (rs.next()) {
 int x = rs.getInt("a");
 String s = rs.getString("b");
 float f = rs.getFloat("c");
 }

During certain next() API calls, the client can experience a pause while the driver fetches another buffer
of row data. To remove this pause, enable parallel IO buffering by setting the ParallelIoBufferCount
(PIOBC) JDBC driver property.

Parallel IO
To improve performance, enable Parallel IO.

When Parallel IO is enabled, the JDBC driver creates a separate parallel IO thread from which a given
number of buffers that are sent from the server are pre-fetched, read, and placed in a queue. The driver
tries to keep the queue as full as possible so that there is always at least one buffer ready for the next()
API call to use. This eliminates the pause that can occur as a result of certain next() calls. The client
continues to call the next() buffer in the results set, until all rows in all buffers are read and queued.

The ParallelIoBufferCount (PIOBC) property determines the number of buffers to pre-fetch on the
parallel IO thread. The illustration that follows, shows row data being sent to the client using both the
main and the parallel thread.

24 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

Figure 3. Parallel IO pre-fetches buffers

Materializing row bytes into Java objects on the thread

In addition to prefetching buffers, the Parallel IO thread can be used to materialize row data into their
expected Java object representations, as illustrated in the following figure:

Chapter 2. Spark SQL data access: JDBCThe JDBC driver V3.1 25

Figure 4. Materializing prefetched row data

The following sample code can be used to convert mainframe bytes to Java objects on the Parallel IO
thread. The schema assumes that when the main thread calls a get API on the result set for a given
column, that it will use the same get API on subsequent rows; for example getString().

Connection con = DriverManager.getConnection(
 "jdbc:myDriver:myDatabase",
 username,
 password);

 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery("SELECT a, b, c FROM Table1");

 while (rs.next()) {
 int x = rs.getInt("a");
 String s = rs.getString("b");
 float f = rs.getFloat("c");
 }

The MapReduceFillValueThreshold (MRFVT) and MapReduceFillValueMaximumInitialSize
(MRFVMIS) JDBC property settings govern this behavior. When the MapReduce or Parallel IO read queue
fills up beyond the MapReduceFillValueThreshold size, the driver materializes the column values.
The default is off (-1) and a reasonable experimental value is two buffers.

When the MR or PIO read queue fills up beyond the MapReduceFillValueThreshold value, the
MapReduceFillValueMaximumInitialSize row count is the initial capacity of the result row pre-
fetch cache for a given buffer. The arbitrary default is 20,000 rows per buffer and it grows dynamically
from there.

26 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

MapReduce
MapReduce is a the JDBC driver-controlled feature that is used to improve performance by reading
results from the server faster.

Choose from the following MapReduce options:

• Server-controlled MapReduce – MapReduce is performed on the server using the JDBC driver.
• Client-controlled MapReduce – MapReduce is performed on the client and the JDBC driver is used for a

single connection.

If you are using MapReduce with RDBMS or IMS, you must complete the meta data repository
configuration requirements. See "MapReduce" in the Administration Guide.

Server controlled MapReduce

When configuring MapReduce for the server, the mapping step spawns threads that execute a query using
one or more server connections. Each thread hosts one connection to one server. The reduce step reads
results on each thread in parallel for each connection, and then transparently presents the data to the
JDBC call sites.

To configure MapReduce to use a single server connection, set the MapReduceClient JDBC property as
follows:

MapReduceClient = (Hostname, Port, TaskCount)

For example: MapReduceClient= (dvs.example.com, 9999, 7)

As the following illlustration shows, MapReduce can also be configured to use multiple server
connections.

Chapter 2. Spark SQL data access: JDBCThe JDBC driver V3.1 27

To configure MapReduce to use multiple server connections, set the MapReduceClient property as
follows:

MapReduceClient = (Hostname1, Port, TaskCount1), (Hostname2, Port, TaskCount2),…

For example: MapReduceClient = (dvs1.example.com, 9999, 4), (dvs2.example.com,
1111, 3)

To further control MapReduce to use a specific range of clients, set the MapReduceClient property as
follows:

MapReduceClient = (Hostname, Port, maxClientNo, startClientNo, endClientNo)

For example, the following specifies MapReduce over two servers for client numbers 1 through 4 and 5
through 7: MapReduceClient = (host1, 1200, 7, 1, 4), (host2, 1200, 7, 5, 7)

The maxClientNo must be the same for both servers.

Client controlled MapReduce

In some use cases, such as when using Apache Spark, you may want to let the client perform the
MapReduce process and still benefit from the server’s MapReduce feature. The JDBC driver supports this
use case by specifying a single connection as the JDBC MapReduce connection. That single connection is
then available for use by a group of specified connections. The JDBC driver only manages the one
connection. The client must aggregate the results from each individual connection that is being managed.

28 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

To enable client-controlled MapReduce, set the MapReduceClientCount and
MapReduceClientNumber driver properties.

The MapReduceClientCount property is used to specify the total number of connections associated
with the group of client connections. The MapReduceClientNumber property specifies a specific client
connection within the group, and has a value between the number 1 and the number specified for the
MapReduceClientCount property.

The JDBC driver executes queries using the single MapReduce connection for the client connection
specified in the MapReduceClientNumber property. Only the rows of data for the specified connection
are returned, as opposed to using MapReduceClientCount over one or more connections to get all rows
of data.

To configure client-side MapReduce, set the JDBC driver MapReduceClientNumber and
MapReduceClientCount parameters as follows:

MapReduceClientNumber,MapReduceClientCount

For example: MapReduceClientNumber=2;MapReduceClientCount=7;

In this example, the JDBC driver only creates a single connection, indicated as connection 2 out of 7
available connections. Using a framework like Apache Spark, you must create and manage all remaining
connections and aggregate the results from each of those connections.

JDBC driver APIs
The following tables document the methods that are not supported by each of the java interfaces.

The following methods are not supported with the java.sql.Connection interface:

Return type Method name

Blob createBlob ()

Clob createClob ()

NClob createNClob ()

SQLXML createSQLXML ()

Struct createStruct (String typeName, Object []
attributes)

String getSchema ()

int getTransactionIsolation ()

boolean isReadOnly ()

void releaseSavepoint (Savepoint savepoint)

Chapter 2. Spark SQL data access: JDBCThe JDBC driver V3.1 29

Return type Method name

void rollback (Savepoint savepoint)

Savepoint setSavepoint ()

Savepoint setSavepoint (String name)

The following methods are not supported with the java.sql.PreparedStatement interface:

Return type Method name

void setArray(int parameterIndex, Array x)

void setAsciiStream(int parameterIndex, InputStream
x)

void setAsciiStream(int parameterIndex, InputStream
x, int length)

void setAsciiStream(int parameterIndex, InputStream
x, long length)

void setBinaryStream(int parameterIndex, InputStream
x)

void setBinaryStream(int parameterIndex, InputStream
x, int length)

void setBinaryStream(int parameterIndex, InputStream
x, long length)

void setBlob(int parameterIndex, Blob x)

void setBlob(int parameterIndex,InputStream
inputStream)

void setBlob(int parameterIndex,InputStream
inputStream, long length)

void setCharacterStream(int parameterIndex,Reader
reader)

void setCharacterStream(int parameterIndex,Reader
reader, int length)

void setCharacterStream(int parameterIndex,Reader
reader, long length)

void setClob(int parameterIndex, Clob x)

void setClob(int parameterIndex, Reader reader)

void setClob(int parameterIndex, Reader reader, long
length)

void setNCharacterStream(int parameterIndex,Reader
value)

void setNCharacterStream(int parameterIndex, Reader
value, long length)

void setNClob(int parameterIndex, NClob value)

void setNClob(int parameterIndex, Reader reader)

30 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

Return type Method name

void setNClob(int parameterIndex, Reader reader,
long length)

void setRowId(int parameterIndex, RowId x)

void setSQLXML(int parameterIndex, SQLXML xmlObject)

The following methods are not supported with the java.sql.Statement interface:

Return type Method name

ResultSet getGeneratedKeys()

void setEscapeProcessing(boolean enable)

The following methods are not supported with the java.sql.ResultSet interface:

Return type Method name

boolean absolute(int row)

void afterLast()

void beforeFirst()

boolean first()

Array getArray(int columnIndex)

Array getArray(String columnLabel)

NClob getNClob(int columnIndex)

NClob getNClob(String columnLabel)

ref getRef(String columnLabel)

SQLXML getSQLXML(int columnIndex)

SQLXML getSQLXML(String columnLabel)

boolean last()

boolean previous()

boolean relative(int rows)

void updateArray(String columnLabel, Array x)

void updateAsciiStream(int columnIndex, InputStream
x)

void updateAsciiStream(int columnIndex, InputStream
x, int length)

void updateAsciiStream(int columnIndex, InputStream
x, long length)

void updateAsciiStream(String columnLabel,
InputStream x)

void updateAsciiStream(String columnLabel,
InputStream x, int length)

void updateAsciiStream(String columnLabel,
InputStream x, long length)

Chapter 2. Spark SQL data access: JDBCThe JDBC driver V3.1 31

Return type Method name

void updateBigDecimal(int columnIndex, BigDecimal
x)

void updateBigDecimal(String columnLabel,
BigDecimal x)

void updateBinaryStream(int columnIndex,
InputStream x)

void updateBinaryStream(int columnIndex,
InputStream x, int length)

void updateBinaryStream(int columnIndex,
InputStream x, long length)

void updateBinaryStream(String columnLabel,
InputStream x)

void updateBinaryStream(String columnLabel,
InputStream x, int length)

void updateBinaryStream(String columnLabel,
InputStream x, long length)

void updateBlob(int columnIndex, Blob x)

void updateBlob(int columnIndex, InputStream
inputStream)

void updateBlob(int columnIndex, InputStream
inputStream, long length)

void updateBlob(String columnLabel, Blob x)

void updateBlob(String columnLabel, InputStream
inputStream)

void updateBlob(String columnLabel, InputStream
inputStream, long length)

void updateBoolean(int columnIndex, boolean x)

void updateBoolean(String columnLabel, boolean x)

void updateByte(int columnIndex, byte x)

void updateByte(String columnLabel, byte x)

void updateBytes(int columnIndex, byte[] x)

void updateBytes(String columnLabel, byte[] x)

void updateCharacterStream(int columnIndex, Reader
x)

void updateCharacterStream(int columnIndex, Reader
x, int length)

void updateCharacterStream(int columnIndex, Reader
x, long length)

void updateCharacterStream(String columnLabel,
Reader reader)

32 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

Return type Method name

void updateCharacterStream(String columnLabel,
Reader reader, int length)

void updateCharacterStream(String columnLabel,
Reader reader, long length)

void updateClob(int columnIndex, Clob x)

void updateClob(int columnIndex, Reader reader)

void updateClob(int columnIndex, Reader reader,
long length)

void updateClob(String columnLabel, Clob x)

void updateClob(String columnLabel, Reader reader)

void updateClob(String columnLabel, Reader reader,
long length)

void updateDate(int columnIndex, Date x)

void updateDate(String columnLabel, Date x)

void updateDouble(int columnIndex, double x)

void updateDouble(String columnLabel, double x)

void updateFloat(int columnIndex, float x)

void updateFloat(String columnLabel, float x)

void updateLong(int columnIndex, long x)

void updateLong(String columnLabel, long x)

void updateNCharacterStream(int columnIndex, Reader
x)

void updateNCharacterStream(int columnIndex, Reader
x, long length)

void updateNCharacterStream(String columnLabel,
Reader reader)

void updateNCharacterStream(String columnLabel,
Reader reader, long length)

void updateNClob(int columnIndex, NClob nClob)

void updateNClob(int columnIndex, Reader reader)

void updateNClob(int columnIndex, Reader reader,
long length)

void updateNClob(String columnLabel, NClob nClob)

void updateNClob(String columnLabel, Reader reader)

void updateNClob(String columnLabel, Reader reader,
long length)

void updateNString(int columnIndex, String nString)

void updateNString(String columnLabel, String
nString)

Chapter 2. Spark SQL data access: JDBCThe JDBC driver V3.1 33

Return type Method name

void updateNull(int columnIndex)

void updateNull(String columnLabel)

void updateObject(int columnIndex, Object x)

void updateObject(int columnIndex, Object x, int
scaleOrLength)

void updateObject(String columnLabel, Object x)

void updateObject(String columnLabel, Object x, int
scaleOrLength)

void updateRef(int columnIndex, Ref x)

void updateRef(String columnLabel, Ref x)

void updateRowId(int columnIndex, RowId x)

void updateRowId(String columnLabel, RowId x)

void updateShort(int columnIndex, short
x)updateShort(String columnLabel, short x)

void updateSQLXML(int columnIndex, SQLXML
xmlObject)

void updateSQLXML(String columnLabel, SQLXML
xmlObject)

void updateString(int columnIndex, String x)

void updateString(String columnLabel, String x)

void updateTime(int columnIndex, Time x)

void updateTime(String columnLabel, Time x)

void updateTimestamp(int columnIndex, Timestamp x)

void updateTimestamp(String columnLabel, Timestamp
x)

34 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

Chapter 3. The ODBC driver V3.1
For non-Java based applications and tools, use the ODBC driver to access data that is made available
through Data Virtualization Manager.

The ODBC driver implements the ODBC Direct network protocol that is used to connect to the Data
Virtualization Manager server, and uses the ODBC API to execute SQL queries. The driver implements all
of the core level 1, and all but one method of the level 2 ODBC functionality.

The driver is available for Windows and Unix/Linux platforms.

Platform Installation file name

Windows operating system • DV_ODBC-3.1.24384-win32.exe
• DV_ODBC-3.1.24384-win64.exe

Unix

• Red Hat Enterprise Linux 5
x86

• Red Hat Enterprise Linux 5
x64

• Red Hat Enterprise Linux 6
x86

• Red Hat Enterprise Linux 6
x64

• Red Hat Enterprise Linux 7

• DV_ODBC-3.1.24501-rhel5-x64.tar
• DV_ODBC-3.1.24501-rhel5-x86.tar
• DV_ODBC-3.1.24501-rhel6-x64.tar
• DV_ODBC-3.1.24501-rhel6-x86.tar
• DV_ODBC-3.1.24501-rhel7-x64.tar
• DV_ODBC-3.1.24501-slesl0-x64.tar
• DV_ODBC-3.1.24501-slesl0-x86.tar
• DV_ODBC-3.1.24501-slesl1-x64.tar
• DV_ODBC-3.1.24501-slesl1-x86.tar
• DV_ODBC-3.1.24501-slesl2-x64.tar
• DV_ODBC-3.1.24501-slesl2-x86.tar

The following ODBC drivers are installed:

• IBM Data Virtualization Manager for z/OS driver
• IBM Data Virtualization Manager for z/OS Debug driver

The Debug driver incorporates an advanced tracing component that allows for detailed tracing of ODBC
calls. It should be utilized during application development in case problems are encountered and there is
a need to contact Customer Support. After applications have been developed and debugged, the code
should be modified to use the IBM Data Virtualization Manager for z/OS driver. The Debug driver’s
performance may be slightly less than the driver.

Connecting an application to a data source using ODBC
Connection details may be specified in a data source name (DSN). On a Windows computer, you configure
a DSN based on the [version #] driver with the ODBC Data Source Administrator utility. The General tab
allows entry of all required connection properties; the Advanced tab allows entry of optional connection
properties. An identical DSN must be configured on all computers on which applications that are
dependent on this DSN run.

Alternatively, an application may utilize a connection string to specify all required and optional connection
properties. When you use this approach, a DSN is not required. The connection string consists of a
sequence of semicolon separated entries of the form KEYWORD=value. The following table lists the
required keywords.

© Copyright IBM Corp. 2017, 2018 35

Table 2. Application connection keywords

KEYWORD Value

DRIVER Must be: {Data Virtualization Driver 3.1}. This
keyword must be provided even if the connection
string is being used to add connection properties to
a DSN.

UID User name or identifier

PWD Password or password phrase for the specified
user

PORT TCP/IP listener port

HOST Host name or IP address of the server that runs the
target data source

SUBSYS DB2 subsystem if using DB2; otherwise must be
set to NONE.

DSN Data source name. If provided, connection string
values override corresponding values in DSN. Set
to null (no entry after =) if a DSN is not relevant.

obConn.ConnectionString=”DRIVER={Data Virtualization
Driver 3.1};
UID=userid;PWD=xxxx;Port=####;HOST=hostname or IPad
dress;
SUBSYS=NONE;DSN=;”

Applications executing on the same sysplex as the server are not required to specify logon credentials
when invoking the JDBC driver. Instead, the application can specify empty string settings for the user and
password to indicate that the current application user ID is to be used. For example, empty values can be
specified in the JDBC connection string as follows:

…; user=;password=; …

When values are specified, the credentials supplied on the driver connection string will be used to
override any user ID collected by ioctl when the driver is executing on the same sysplex.

Refer to the list of connection properties for all required and optional KEYWORDS and their interpretation.

Accessing Double Byte Characters
To access double byte characters, do the following:

• Set the parameter DBCS mode to GRAPHIC.
• Set the parameter LGID with appropriate values.
• Set the target variable data type as SQL_C_WCHAR in the application.

For example, to display and access double byte characters such as Japanese characters, the target
variable data type should be set as SQL_C_WCHAR in the application, the DBCS mode should be set to
GRAPHIC, and the LGID value should be set to JPL, JNL, or JTL.

If the value of a graphic column is 本社本社本社本社本社 with a length 10 and if it is fetched using the
SQLGetData() API with the TargetType set as SQL_C_WCHAR, the data is displayed as 本社本社本社本
社本社.

If the value is fetched using the SQLGetData() API with the TargetType set as SQL_C_CHAR (which is
single byte), 20 bytes of data is displayed.

36 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

ODBC connection properties
The following table lists the connection parameters that are used to configure the driver.

Table 3. ODBC connection properties

Parameter name Description

Accessible Tables

Alias: AT

This parameter is used to control if table lists returned by the driver should
only contain tables that can be accessed by the current user. Select YES if
you want only those tables that are returned for which you have SELECT
authority. The table list includes tables for which the SELECT authority has
been granted to PUBLIC or PUBLIC AT ALL LOCATIONS. The table list does
not include tables for which you have SELECT authority by virtue of a
secondary authorization ID.

ADABAS Correlation
Name Support

Alias: ABCN

This parameter requests support for ADABAS column correlation names on a
connection basis. Use the server parameter ADABASCORRELATIONIDS to
control correlation name support for all connections. Setting this parameter
to YES may cause errors with older, non-standard SQL that uses syntax that
is in conflict with correlation name usage.

This parameter is only available if SDEM = YES.

Default: NO

Valid values: [YES, NO]

Add WITH UR To
Queries

Alias: WIUR

This parameter controls whether a WITH UR clause should be added to
queries or not. The WITH UR clause reduces the amount of CPU time needed
for some queries as well as possibly changing the results of these queries by
allowing uncommitted data to be read. If this parameter in set to YES, then a
WITH UR clause is added to queries. If this parameter is set to NO, then a
WITH UR clause is not be added to queries. The default is NO.

Allow DataDirect
Licensing Calls

This parameter controls whether the driver should report an error or not,
when SQLSetConnectOption is called for attributes SQL_LIC_FILE_NAME and
SQL_LIC_FILE_PASSWORD. These attributes are specific to Datadirect OEM
client-side licensing and when ADLI is set to NO (default value),
SQLSetConnectOption reports an error that “Driver is not capable of
supporting this option.” But when ADLI (Allow DataDirect Licensing calls) is
set to YES, SQLSetConnectOption bypasses the OEM licensing calls and
returns success.

Allow Repeating
SQLGetData

Alias: RPGT

This parameter when set allows repeating SQLGetData calls for the same
unbound column while the cursor is still on that result set row. The
exceptions are LOB type columns. They cannot be retrieved repeatedly. The
default is NO.

AlternateID

Alias: ALUS

This parameter is used to set the host secondary userid for client
applications. This parameter must be eight or fewer characters long. If this
parameter is set to a non-blank, non-null value a SET CURRENT SQLID
statement is issued after DSNALI OPEN processing is completed.

Always Convert
Dynamic SQL

Alias: ALCD

This parameter controls what happens if dynamic SQL cannot be converted
to static SQL. If this parameter is set to YES, an error is reported to the
application if dynamic SQL cannot be converted to static. If this parameter is
set to NO, the dynamic SQL is sent to the host for processing. This parameter
is not even tested unless the primary Dynamic-To-Static SQL parameter is
set to YES. This parameter must be set to NO if dynamic SQL, and static SQL
are going to be used together.

Chapter 3. The ODBC driver V3.1 37

Table 3. ODBC connection properties (continued)

Parameter name Description

Application Name

Alias: APNA

The Application Name is sent to the host as part of the login information. The
Application Name is normally used to group SQL statements within a plan. If
the Application Name is not set, then all of the SQL associated with a plan is
considered to be part of one large group. If the SQL used with one plan must
be divided into subgroups (for conversion to static SQL), then Application
Name must be set.

Async Execution
Timeout Value

Alias: ASTM

This parameter controls the default wait time for an ODBC function that is
running asynchronously. This parameter is measured in seconds, and must
be an integer. The default value is 2 seconds.

Authentication Method

Alias: SECU

This parameter allows the user to choose whether to encrypt logon credential
using DEFAULT encryption mechanism or AES encryption mechanism.
DEFAULT

The password is encrypted by using the Data Virtualization Manager
encryption mechanism when the logon request is sent to the host.

AES
The password is encrypted by using Diffie-Hellman key exchange (by
using AES encryption) when the logon request is sent to the host.

When DOMAIN-BASED authentication is selected, the driver will verify that
the user ID associated with the current process has been authenticated by a
domain-based system. For the Windows platforms, this requires that the user
first logs on to a NT domain. For the UNIX platforms, the local machine must
be a member of a NIS domain, and the password database used to
authenticate the user must be NIS-mapped.

Default: DEFAULT

Valid values: [DEFAULT, AES]

Binary Passthrough

Alias: BIPA

This parameter controls if host binary data should be returned to client
applications without being converted to hexadecimal. If this parameter is set
to YES, host binary data is passed through to client applications unchanged.
If this parameter is set to NO, then host binary data is converted to
hexadecimal (in accordance with the ODBC specification). The default is NO.

Bind DOUBLE as
DECFLOAT

Alias: DADE

This parameter controls how the driver should bind a DOUBLE input value for
the target decimal column. When it is set, the driver binds a DOUBLE input
value as a DECFLOAT value. Default is YES, which means that the value of
target decimal column is rounded, not truncated.

38 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

Table 3. ODBC connection properties (continued)

Parameter name Description

Buffer Format

Alias: BUFO

This parameter controls what format of optimization of the buffer is used to
transmit and receive data to the server. Values include:

• CMBU – If this parameter is set to CMBU, the communication buffers are
sent to the server and received from the server in a compressed format.

• CMBV – If this parameter is set to CMBV, the communication buffers are
sent to the server and received from the server truncated row data.

• CMBZ – If this parameter is set to CMBZ, the communication buffers are
sent to the server and received from the server using ZLIB library for
compression and decompression data.

• UNCOMPRESSED – If this field is set to UNCOMPRESSED, the
communication buffers are sent to and received from the server in an
uncompressed format.

Default: UNCOMPRESSED

Bypass Double Quotes

Alias: BYDB
This parameter is set to YES if double quotation marks should be left alone.
This parameter is provided to fix certain application bugs.

Bypass Optional Output
Parameter

Alias: BYOP

This parameter controls how the driver should handle the optional output
parameter in the escape CALL syntax {?=CALL procname}. Currently, host
procedure does not return any value for the optional output parameter, so
this parameter should always be set to YES, which is the default.

CALL Lock Value

Alias: CALK

This parameter controls the type of lock that is associated with CALL
statements on the host. If this parameter is set to NONE, then the host code
assumes that CALL statements do not obtain any host database locks. Other
possible values are SHARE, UPDATE, and EXCLUSIVE. The default is
EXCLUSIVE.

Catalog Prefix

Alias: CPFX
This parameter indicates that the table owner (has authorization ID) of the
eight DB2 tables that are optimized to support ODBC catalog queries.

Change Char Data Type
length

Alias: CHLN

This parameter controls if SQLTypeInfo calls should show that variable data
is 255 bytes long or not. DB2 variable data is only 254 bytes long. However,
some applications do not support this. If this variable is set to YES, then
SQLTypeInfo will return 255 as the length of variable data. If this variable is
set to NO then SQLTypeInfo will return 254. Note that if this keyword is set to
YES, then the behavior of SQLCancel is modified to circumvent vendor
implementation errors. The default is NO.

Change Dynamic SQL to
Auto-Static

Alias: AUST

This parameter controls the conversion of Dynamic SQL to Auto-Static SQL.
This functionality is only available when connected to DB2. Dynamic SQL, and
it can only be converted to Auto-Static SQL if the host supports it and this
parameter is set to YES. If this parameter is set to YES the driver attempts to
convert all Dynamic SQL to Auto-Static SQL. If this parameter is set to NO
normal Dynamic SQL processing is performed. The default is YES.

Chapter 3. The ODBC driver V3.1 39

Table 3. ODBC connection properties (continued)

Parameter name Description

Column Order Option

Alias: CNMD

"This parameter shows how column names should be returned by the
SQLColumns function that don't specify a column name order. If the order of
column names aren't specified, this parameter determines the order that the
SQLColumns function returns. this parameter controls the connection mode
that is used by ODBC applications. The connection mode determines how
long each physical connection (session or conversation) lasts and if SQL
operations are processed in blocks. The default is to use a permanent
connection and to send each SQL operation standalone to the server. In
BLOCK mode, the session is permanent. However, SQL operations are
blocked and sent together. In TRANSACTION mode each SQL operation is
sent standalone but the session is terminated at the end of each Logical Unit
Of Work (LUOW). In TRANSBLOCK mode the session is terminated at the end
of each LUOW and SQL operations are blocked and sent together. In
MESSAGE mode SQL operations are blocked and sent together using
messages. In MESSAGE mode, no session is ever maintained.

Connection Mode

Alias: CNMD

This parameter controls the connection mode used by ODBC applications.
The connection mode determines how long each physical connection
(session or conversation) lasts and if SQL operations are processed in
blocked. The default is to use a permanent connection and to send each SQL
operation standalone to the server. In BLOCK mode, the session is
permanent. However, SQL operations are blocked and sent together. In
TRANSACTION mode each SQL operation is sent standalone but the session
is terminated at the end of each Logical Unit Of Work (LUOW). In
TRANSBLOCK mode the session is terminated at the end of each LUOW and
SQL operations are blocked and sent together. In MESSAGE mode SQL
operations are blocked and sent together using messages. In MESSAGE
mode, no session is ever maintained.

Connection Name

Alias: CNNA

This parameter is used to specify the connection name. The use of the
connection name is application-specific. The connection name can be up to 8
bytes long. However, the application may or may not use all of the bytes. The
connection name is padded on the right with blanks.

Connection Timeout
Value

Alias: CNTM

This parameter controls how long the ODBC client waits for a connection to
the host server to complete. If this parameter is set to zero, then the system
default value is used. Otherwise, the specified value is used. This value
should never be negative, but can be zero. The use of this parameter may
cause unpredictable results in many environments. This value is measured in
seconds. The default is zero.

Convert DB2 Date to
CHAR

Alias: DTCH

When this parameter is set, the DB2 date field is converted to SQL_CHAR.
The default is NO.

Convert DB2 Time to
CHAR

Alias: TSCH

When this parameter is set, the DB2 timestamp and time fields are converted
to SQL_CHAR. The default is NO.

Convert Dynamic SQL to
Static SQL

Alias: CD

This parameter is used to control converting dynamic SQL to static SQL.
Dynamic SQL can only be converted to static SQL if this parameter is set to
YES, and if the .pln file can be located and contains all of the SQL conversion
information.

40 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

Table 3. ODBC connection properties (continued)

Parameter name Description

Convert Nulls to Blanks

Alias: CVNL

This parameter controls if nulls (zero bytes) in character string data that is
returned from the server to the client should be converted to blanks or not.
Both fixed length and variable length character data is affected by this
parameter. If this parameter is set to YES, then nulls are converted to blanks.
If this parameter is set to NO, then nulls are not converted. The default is NO.

Convert Strings to
Params

Alias: LGPA

This parameter controls if long strings should be converted to LONG
VARCHAR types. This conversion is needed because some applications
produce literals that are longer than can be handled by the host database. If
this parameter is set to NO, then each SQL string is not scanned for long
strings. If this parameter is set to YES, then all long strings are converted.

Convert Timestamps

Alias: CVTS

This parameter controls if timestamp values should be converted to other
types. If this parameter is set to YES, then timestamps that appear to be
dates are converted to dates and timestamps that appear to be times are
converted to times. These conversions are required to circumvent bugs in
several products including MS Access and Crystal Reports. If this parameter
is set to NO, then timestamps are not modified. The default is NO.

Convert LONG VAR Data
to LOB

Alias: LBCB

This parameter when set allows any SQL_LONGVARCHAR or
SQL_LONGVARBINARY data to be treated as LOB (either CLOB or BLOB).
Default is YES.

COUNT() Fix Type

Alias: COFX

This parameter controls how COUNT(column name) SQL functions are fixed.
Application tools use the COUNT(column name) function two different ways,
both of which are wrong. In some cases, COUNT (column name) means
COUNT(DISTINCT column name). In other cases it means COUNT(*). If this
parameter is set to DISTINCT, then the DISTINCT keyword will be inserted. If
this parameter is set to ASTERISK, then the column name will be replaced
with a '*'. If this parameter is set to NONE, then no changes will be made. The
default is DISTINCT.

Create Table Index
Automatically

Alias: CRIN

Tables with a primary key or unique constraint are automatically created with
an index to enforce the uniqueness. To disable this option, set this parameter
to NO.

Current Degree

Alias: SEDG

This parameter is used to set the initial Current Degree value on the host. The
only possible values for this parameter are 'ANY' or '1'. No other values are
supported currently. If this parameter is set to a non-blank, non-null value a
SET CURRENT DEGREE statement is issued after DSNALI OPEN processing is
completed.

Current Package Set

Alias: SEPK

This parameter is used to set the initial Current Package Set value on the
host. This value must be eighteen or fewer or characters long. If this
parameter is set to a non-blank, non-null value a SET CURRENT
PACKAGESET statement is issued after DSNALI OPEN processing is
completed. The SET statement assigns the specified value to the CURRENT
PACKAGESET special register.

Current Rules

Alias: SERL

This parameter is used to set the initial Current Rules value on the host. The
only possible values for this parameter are 'DB2' or 'STD'. No other values are
supported now. If this parameter is set to a non-blank, non-null value a SET
CURRENT RULES statement is issued after DSNALI OPEN processing is
completed.

Chapter 3. The ODBC driver V3.1 41

Table 3. ODBC connection properties (continued)

Parameter name Description

Current Schema

Alias: SESC

This parameter is used to set the initial Current Schema value on the host. If
this parameter is set to a non-blank, non-null value a SET CURRENT SCHEMA
statement is issued after DSNALI OPEN processing is completed.

Cursor Commit/
Rollback Behavior

Alias: CRBH

This parameter controls what value to return for the cursor commit and
rollback behavior SQLGetInfo request. DELETE closes cursors and delete
prepared statements. To use the cursor again, the application must
reprepare and re-execute the statement. CLOSE only closes cursors. For
prepared statements, the application can call SQLExecute on the statement
without calling SQLPrepare again. PRESERVE will preserve the cursor
position and the prepared statement. The default is CLOSE.

Customer Secret Key

Alias: SKEY
The secret key value for the user.

Data Source Name

Alias: DSN
The developer specified name for this data source.

Data Truncation

This parameter controls whether to truncate the extra characters, display a
warning or give a client error message or send a message to the server and
return the server error message. If Warning, then it truncates and returns a
warning. If Error, a client error message is returned. If Ignore, the query is
sent to the server and a server error message is returned. The default is
Warning.

Date Format

Alias: DTFM

This parameter is used to specify how ODBC dates are converted to character
strings. If this field is set to ODBC, then the standard ODBC/ISO format yyyy-
mm-dd is used. If this field is set to UK, then the dd-mm-yyyy format is used.
If this field is set to EUR, then the dd.mm.yyyy format is used. If this field is
set to USA, then the mm/dd/yyyy format is used. If this field is set to USA2,
then the mm/dd/yy format will be used. The default is ODBC.

DB2 Default DB

Alias: PARM

This is the default DB2 database that is used when issuing a CREATE TABLE.
All CREATE TABLE queries are suffixed with “IN DATABASE” and the
specified value.

DB2 Plan Name

Alias: PLAN
This is the DB2 plan name that is used to create the thread to DB2 at connect
time. Default setting is blank.

DB2 Version String

Alias: D2VR

This parameter overwrites the host returned DB2 version string data. This
string should be in the following format: x.y.z --- where x, y and z are all
numeric digits. x is the DB2 version byte. y is the DB2 modification level. z is
the DB2 release level. Both the version byte and the modification level must
be set. If the release level is not set, then 0 is assumed. For example, 2.3 for
DB2 version 2 mod level 3; 4.1.1 for DB2 version 4 mod level 1 and rel 1.

DBCS Mode

Alias: DBMD

This parameter is used to specify what type of data will be converted to DBCS
data that stored in the column types of GRAPHIC, VARGRAPHIC and
LONGVARGRAPHIC. If CHAR is specified, then the DBCS data will be treated
as character data. If BINARY is specified, then the DBCS data will be treated
as binary data. If GRAPHIC is specified, then the DBCS data will be treated as
graphic data. The default is CHAR.

42 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

Table 3. ODBC connection properties (continued)

Parameter name Description

DBCS Remove Blanks

Alias: DBQO

This parameter controls if blanks are removed from within quoted strings for
double byte languages (such as Chinese, Japanese, and Korean). If this
parameter is set to YES, then blanks within quoted strings in SQL being sent
to the host is removed. If this parameter is NO, then blanks inside quoted
strings in SQL being sent to the host is not changed. The default is YES.

DBMS Type

Alias: DBTY
The type of database to be accessed. Select from DRDAorDB2 or DVS.

Decimal as Numeric

Alias: DENU

The driver treats DECIMAL and NUMERIC columns the same. This parameter
determines whether these columns should be reported as DECIMAL columns
or NUMERIC columns. When set to YES, all DECIMAL and NUMERIC columns
are reported as NUMERIC. When set to NO, all DECIMAL and NUMERIC
columns are reported as DECIMAL. The default is NO.

Decimal Point is Comma

Alias: DCCM

This parameter controls if the decimal point is a comma or a period. If this
parameter is set to YES, then comma is considered to be the decimal point. If
this parameter is set to NO, then period is considered to be the decimal point.
This parameter should only be set to YES, if the host uses comma as the
decimal point. This parameter causes commas to be converted to periods
before data is passed to the Auto-Static SQL conversion facility. The default
is NO.

Default Column Names

Alias: DFCL

This parameter controls whether the driver assigns default column names (of
the form COLnnn, where nnn is the column number) when the DBMS does not
return names for the columns. The default is NO.

Default DatabaseAlias:
DBD

This parameter is added to CREATE TABLE statements that do not specify a
database in which to create the table. If the statement includes the 'IN
DATABASE' clause, the driver will append this clause using the default
database value. This parameter is required for almost all users, since most
users do not have authority to create tables in DB2's default database.

Default Schema

Alias: DFSC

This parameter controls the default schema for stored procedures with
implicit schema name. The default, or value 0, means the procedures are run
as IBM Data Virtualization Manager for z/OS RPC. If the value is set to 1, the
server uses RPCDEFAULTSCHEMA value as the schema name. If the value is
a specific schema name, the schema name is used as the default schema.

Defer Prepare for CALLs

Alias: DFPR

This parameter controls if prepare of CALL statements is deferred or not. If
this field is set to YES, then prepare is always deferred. If this flag is set to
NO, then prepare is only deferred for CALLs that have one or more parameter
markers. That is, prepare is always deferred for CALLs that have parameter
markers. Prepare is deferred for CALLs that do not have parameter markers,
only if this parameter is set to YES. The default is NO.

Description Optional description of the data source.

Disable Async Option

Alias: NOAS
This parameter is used to indicate whether, or not asynchronous execution is
allowed. Setting this parameter to YES prevents all asynchronous processing.

Disable All Prompts

Alias: NOPM

This parameter when set to YES disables all interactive prompts or
informational message boxes. This feature is required for when the driver is
being called from an NT service, an UNIX daemon process, or any server type
applications, which cannot be interrupted.

Chapter 3. The ODBC driver V3.1 43

Table 3. ODBC connection properties (continued)

Parameter name Description

Disable List of Catalogs

Alias : DILC

This parameter disables obtaining a list of catalogs by the SQLTables ODBC
function. Setting this option to YES forces the SQLTables to return RC = -1
and SQLSTATE = 'S1C00' (for ODBC2.0) or SQLSTATE = 'HYC00' (for
ODBC3.0). It allows to circumvent a conflict between using special semantics
of SQLTables call for obtaining a list of catalogs and processing SQLTables
calls by MS Excel to get a list of tables. The default value is YES which means
that obtaining a list of catalogs is disabled."

Disable Prepare/Open

Alias: DIPO

This parameter sets the prepare/open optimization. Setting this parameter to
NO saves a network round trip for SQLPrepare and SQLExecute by ignoring
the SQLPrepare until SQLExecute is called or an ODBC function requesting
meta-data is called. YES disables this optimization by sending the
SQLPrepare and SQLExecute in separate network calls. This parameter
affects DB2 SQL only. For non-DB2 SQL, a prepare is always sent to the host
at SQLPrepare, and an execute is always sent to the host at SQLExecute. For
applications that access non-DB2 data source and do NOT require meta-data
at prepare time, it is recommended to set WRPR to NO for better
performance since this saves a network roundtrip at prepare time.

Disconnect Timeout
Value

Alias: DCTM

This parameter controls how many seconds the driver waits for a socket to be
ready for disconnect operations. The default value is 30 seconds. Setting the
field to zero disables the timeout. This value should never be negative.

Display Leading Zero

This parameter controls whether to display the leading 0 before the decimal
point when the user requests a String representation of a Decimal column
value with precision is equal to scale. The default is YES, which means the
leading zero is displayed.

DTS Plan File

Alias: DSFL

This parameter is used to specify the name of the local plan file that is used
to convert dynamic SQL to static SQL. The plan file name should end with .pln
and can be a full path name, if need be. This parameter should only be used if
the local plan file does not have the default name and/or is not located in the
working directory of the application. The default name of the local plan file is
always planname.pln, where planname is the name of the DB2 plan that is
used by the application.

Enable SQLPrepare for
ADABAS/VSAM/IMS

Alias: WRPR

This flag controls the behavior of SQLPrepare for non-DB2 data sources such
as ADABAS, VSAM, IMSDB, and VSAM CICS. When this keyword is set to YES
(which is the default), a request is always sent to the host at SQLPrepare time
to obtain metadata for the SQL statement. For applications that access non-
DB2 data sources and do NOT require metadata after the SQLPrepare, it is
recommended to set WRPR to NO for better performance since this will
eliminate a network roundtrip whenever a SQLPrepare is executed.

This parameter is only available if SDEM = YES.

Default: YES

Valid values: [YES, NO]

Enable
SQL_QUERY_TIMEOUT
Support

Alias: ESQT

This parameter controls whether the driver supports the option
SQL_QUERY_TIMEOUT in the SQLSetStmtOption API or not. The default is
NO, which means the driver ignores the SQL_QUERY_TIMEOUT value set by
the application. If this parameter is set to YES, the driver honors the setting.
If Operation Timeout (OPTM) is also set, the value set in OPTM takes
precedence.

44 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

Table 3. ODBC connection properties (continued)

Parameter name Description

Encryption Method

Alias: EM

Specifies the method that the driver uses to encrypt data that is exchanged
between the driver and the database server. The value NONE means the data
that is exchanged is not encrypted. The value TLS1 means the data that is
exchanged is encrypted by using the TLS1 version, TLS1.1 (TLS version 1.1),
TLS1.2 (TLS version 1.2) of the SSL protocol. The value SSL3 means the data
that is exchanged is encrypted by using the SSL3 version of the SSL protocol.
The default is NONE.

Extended Cursor Pool

Alias: EXCU

This parameter controls if the Extended Cursor Pool should be used or not. If
this parameter is set to YES, then the Extended Cursor Pool is used. The
Extended Cursor Pool is much larger than the standard cursor pool. The
Extended Cursor Pool cannot be used with Auto-Static SQL. If this parameter
is set to NO, then the normal cursor pool is used. The default is NO.

Fix Floating Point
Rounding

Alias: FXFL

Floating point errors are typically seen when a floating point number is
converted to a decimal or integer value. If this parameter is set to YES, then
floating point values are adjusted before they are converted. If this
parameter is set to NO, then no adjustments are made. The default is NO.

Fix INSERT Statements

Alias: FXIS

This parameter controls if the VALUES clause of each INSERT statement
should be scanned for dates, times, and timestamps without quotes and
quotes should be added. If this parameter is set to YES, quotes are added to
dates, times, and timestamps as need be. If this parameter is set to NO, then
INSERT statements are not modified. The default is NO.

Fix String Length

Alias: STFX
This parameter fixes the bug where some products incorrectly set string
length to zero when SQL_CHAR field only contains blanks. The default is NO.

Floating to Character
Digits

Alias: MXDG

This parameter controls the maximum number of digits that should be
generated for a floating point to character conversion. This parameter should
only be specified if the default value is not acceptable. The default value is 6.

German NLS Support

Alias: NLGR

This parameter is set to YES to resolve certain problems handling SQL in the
German language environment. This parameter should not be set for any
other reason.

GRAPHIC Data
Processing

Alias: GHDS

This parameter affects the string literals only for the GRAPHIC columns, if
keyword is set to YES then all string literals not proceeded by 'G' or 'g' are
converted to parameter markers. This parameter is active if the 'Change
Dynamic SQL to Auto-Static' (AUST) = 'No' and the language ID (LGID) is a
DBCS types.

GRAPHIC Literal
Processing

Alias: GXSR

This parameter controls if string literals should be converted to parameter
markers. This conversion is needed for some applications operating in DBCS
modes. If this parameter is set to YES then all string literals not proceeded by
'G' or 'g' will be converted to parameter markers.

Host Name

Alias: HOST

The name or IP address of the computer that runs the database to be
accessed.

Host User Parm

Alias: USERPARM

This parameter is sent to the host as part of the logon information. The host
uses this forwarded value to complete the logon to the host security system
and/or host databases.

Chapter 3. The ODBC driver V3.1 45

Table 3. ODBC connection properties (continued)

Parameter name Description

Identifier Quote Option

Alias: IDQO

This parameter specifies what identifier quotation mark character should be
returned to the application by using SQLGetInfo with
SQL_IDENTIFER_QUOTE_CHAR. This parameter is needed to fix certain
application bugs. The default is DOUBLE quote characters.

Ignore High Bound
Column Errors

Alias: IGHI

This parameter controls if SQLFetch should ignore errors for higher-
numbered bound columns. If this parameter is set to YES, then SQLFetch
ignores column binding errors. If this parameter is set to NO, then column
binding errors are handled normally. This parameter must be set to YES to
enable ODBC tools (such as Microsoft Excel) to work. The default is NO.

Ignore Underscore
Characters

Alias: IGUN

This parameters controls if the underscore character should be considered to
be a wild card or just a regular character. If this parameter is set to YES, then
underscore ('_') are handled as a normal byte. If this parameter is set to NO,
then underscore is treated as a wildcard character that matches other single
byte. This parameter is used to solve problems where a table or procedure
name actually has an underscore in the name and the underscore is
misinterpreted as a wildcard. The default is NO.

Keystore

Alias: KS

Use this parameter to specify the file system location of the keystore file. The
keystore file contains a list of the valid client certificates that are trusted by
the server for optional Client Authentication with SSL.

Note: The keystore and truststore files may be the same file.

Keystore Password

Alias: KSP

The password that is required to access the keystore.

Note: The keystore and truststore files may be the same file and, therefore,
have the same password.

Keep Literal Quotes

Alias: KEQU

This parameter is used to retain quotation marks around and/or embedded in
string literals. If this parameter is set to YES, then quotations around and/or
embedded in string literals are retained. This only applies to string literals
passed to Stored Procedures, including MDI Stored Procedures. If this
parameter is set to NO, then quotation marks are removed from string
literals. The default is NO.

Language ID

Alias: LGID

This parameter is used to specify the language to be used. The possible
values are Arabic (ARB), Simplified Chinese (CHS), Traditional Chinese (CHT),
Danish (DAN), Default (DFT), German (DEU), U.S. English Compatibility (ENC),
U.K. English (ENG), U.S. English (ENU), Modern Spanish (ESN), Castilian
Spanish (ESP), Finish (FIN), French (FRA), Canadian French (FRC), Icelandic
(ISL), Italian (ITA), Japanese (JPL), Japanese Latin Extended (JPX), Japanese
Katakana-Kanji JIS X213 (JNL), Japanese Latin-Kanji JIS X213 (JNX),
Japanese Katakana-Kanji Extended (JTL), Japanese Latin-Kanji Extended
(JTX), Korean using US English for SBCS and KSC 5601 for DBCS (KOR), Micro
Decisionware (MDI), Dutch (NLD), Norwegian (NOR), PeopleSoft English
(PPS), Portuguese (PTG), Swedish (SVE), Turkish (TUR), Korean using Code
Page 833 for SBCS and KSC 5601 for DBCS (KRN), and Norwegian with Latin1
for Unix (NGN). The default is ENU.

46 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

Table 3. ODBC connection properties (continued)

Parameter name Description

Long Data Fix

Alias: LGFX

This parameters controls if a large number should be returned for the length
and precision of LONG VARCHAR fields, rather than the actual length and
precision. This fix is needed to resolve certain problems in ODBCDirect
GetChunk processing. If this parameter is set to YES, then a large number is
returned for the length and precision of LONG VARCHAR fields. If this
parameter is set to NO, then the actual values are returned for the length and
precision of LONG VARCHAR fields. The default is NO.

Maximum Buffer Size

Alias: MXBU

This parameter sets the client-side maximum communication buffer size for
all data exchanges. The default sets the maximum buffer size to 256k. Note
that the final buffer size used by the driver is a negotiated value based on the
server-side setting. The actual run time buffer size could be smaller than the
value specified in this parameter, but not larger. The default is 256k.

Maximum Rows

Alias: MR

This parameter setting limits the number of rows that are returned from a
single query. If no value or zero is specified, no restriction is placed on the
number of rows returned.

MDI Text/Keywords

Alias: MDBO

This parameter controls if variable text and keywords can be used together
with MDI RSPs. If this parameter is set to YES, then variable text can be used
with MDI keywords. If this parameter is set to NO, then variable text cannot
be used with keywords. The default is NO.

MDI Keep Quotes

Alias: MDQO

This parameter controls if quotation marks should be retained around MDI
keyword values. If this parameter is set to YES, then quotations are included
in keyword values and keyword value lengths. If this parameter is set to NO,
then quotations are stripped from MDI keyword values. The default is NO.

MDI Delimited Args
Syntax

Alias: MDSY

This parameter controls whether argument lists delimited by TSQL's special
delimiters are supported. The default is NO.

MDSY Quoting
Character

Alias: MDQC

This parameter sets a configurable quotation character for use in MDI calls.

MDI DATA Padding
Limit

Alias: MDDP

This parameter allows the user to configure the total combined width of
parameters for MDI calls when used in conjunction with MDSY. The default is
0 (no padding).

No Nulls

Alias: NONL

This parameter controls if zero length strings should be returned or not. If
this parameter is set to YES, then zero length strings are replaced by one
blank. If this parameter is set to NO, then zero length strings are not
modified. The default is NO.

Number of Active
Statements

Alias: ACMT

This parameter controls the maximum number of active statements for a
connection. The default value 0 means there can be up to 50 active
statements per connection.

ODBC Client Code Page

Alias: ODPG

This parameter is used to specify the ODBC client code page. The default is a
set of UNIX code pages for UNIX and Windows Latin 1 (ANSI) for all
supported Windows operating systems. Windows Latin 1 is also known as
ISO 8859. Specifying LATIN1 forces the use of the Windows Latin 1 code
page in any environment. Specifying UNIX forces the use of the UNIX code
pages in any environment.

Chapter 3. The ODBC driver V3.1 47

Table 3. ODBC connection properties (continued)

Parameter name Description

Operation Timeout
Value

Alias: OPTM

This parameter controls the timeout value for all client network operations
(that is, query preparation, execution, retrieving result set) AFTER the
connection is established. This value should never be negative, but can be
zero. The use of this parameter may cause unpredictable results in many
environments. This value is measured in seconds. The default is zero.

Optimal Row Count

Alias: OPRW

This parameter limits the number of rows that are returned from the host
each time a request for rows is made. Since any number of requests for rows
can be made for one query, this value has no effect on the total number of
rows that are returned by a query. This value can be used to control the size
of the buffers that are used to return rows from the host.

Optimized Fetch

Alias: RO

This parameter is used to control if Block-Fetch should be used for the
current connection. Specify YES for the block fetch capabilities of the Data
Virtualization Manager server to be used with your queries. Using optimized
fetch greatly speeds up your queries. The only restriction is that cursor-based
deletes [DELETE WHERE CURSOR OF] cannot be used when this mechanism
is enabled.

Password

Alias: PWD

The password for the user ID.

Plan Name

Alias: PLAN

The driver uses plan names on the host to establish a connection to DB2.

Port Number

Alias: PORT

The TCP/IP port on which to communicate with the database.

Precision Adjustment

Alias: PRAD

When this parameter is set, the precision of literal numeric values that are
passed in an RPC call is adjusted to an odd value. For example, the value
12.34 is sent with a precision of 5. The default is YES. NO prevents this
adjustment.

Procedure Name Filter

Alias: PRNF

This parameter is used to filter the procedure names that are returned by the
product. This parameter is only used if it is set to a non-blank value and if the
host application does not provide a procedure name filter string. The
procedure name filter string from either the application or from this
parameter restricts the information that is returned by procedure catalog
inquiries (SQLProcedures and SQLProcedureColumns). Only rows that match
the procedure name pattern that is provided is returned. If this parameter is
set to a single percent sign, then all procedures are returned. There is no
default value for this field.

Procedure Owner Filter

Alias: PROF

This parameter is used to filter the procedure owners that are returned by the
product. This parameter is only used if it is set to a non-blank value and if the
host application does not provide a procedure owner filter string. The
procedure owner filter string from either the application or from this
parameter restricts the information that is returned by procedure catalog
inquiries (SQLProcedures and SQLProcedureColumns). Only rows with owner
ID's that match the procedure owner pattern that is provided are returned. If
this parameter is set to a single percent sign, then all procedures are
returned. This parameter defaults to the current user ID or alternate user ID.

48 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

Table 3. ODBC connection properties (continued)

Parameter name Description

Procedure Owner
Handling

Alias: PROW

This parameter is used to control how procedure owner values are returned
to ODBC applications. If this parameter is set to NULL, the actual owner value
is used as a prefix to the procedure name and the owner field is returned as a
null value. If this parameter is set to EMPTY, the actual owner value is used
as a prefix to the procedure name and the owner field is returned as an
empty string. If this parameter is set to NONE, then the procedure owner
value is not changed. The default is NONE.

Process Escapes

Alias: PRES

This parameter is used to turn off escape clause processing. PRES=NO sets
escape clause processing off and may result in improved performance by
reducing CPU overhead. The default is PRES=YES.

Qualifier Name
Separator

Alias: QUNA

Set this parameter to YES if SQLGetInfo should return a period when it is
called to obtain the SQL_QUALIFIER_NAME_SEPARATOR. This parameter is
provided to fix certain application bugs. The default is NO.

Read Only

Alias: RDON

Set this parameter to YES to make the data source read-only. Setting the
data source to read-only does not prevent update operations. However,
setting this parameter to read-only prevents index information from being
returned to the application. This will generally prevent any updates from
being attempted. Note that setting this parameter to YES will greatly improve
the performance of some applications using the standard DB2 catalogs. The
default is NO.

Remove blanks

Alias: RMBL

This parameter handles data that is received from the server. If the
parameter is set to YES, single-byte trailing blanks (X'40') are removed from
the data strings (in EBCDIC [Host Code]). This does not affect wide blanks
(X'0E40400F'). The default is NO.

Remove Equals

Alias: RMEQ

This parameter controls if the = character should be removed from MDI
keyword names as part of MDI RSP (Remote Stored Procedure) invocation. If
this parameter is set to YES, then the = character is removed from each
keyword name. If this parameter is set to NO, then the = character is not
removed from the keyword name. This flag only applies to MDI RSPs invoked
by using TSQL 0/1/2 syntax. It does not apply to MDI RSPs invoked by using
the extended ODBC CALL syntax. The default is NO.

Return Code if No Rows
Affected

Alias: NODA

This parameter controls what the return code should be set to when an
INSERT/UPDATE/DELETE does not affect any rows. If this parameter is set
to NODATA, the return code from an SQL operation is
SQL_NO_DATA_FOUND. If this parameter is set to INFO, the return code is
set to SQL_SUCESS_WITH_INFO (in accordance with the ODBC
specification). This parameter can also be set to SUCCESS or ERROR. The
return code in these cases is SQL_SUCCESS or SQL_ERROR. The default is
INFO.

Retain Cursor

Alias: HD

This parameter is used to determine if queries should be run with a cursor
that maintains cursor positioning across commit operations. This parameter
must be set to YES to allow the auto-commit at close cursor time feature to
be used. The default is YES.

Chapter 3. The ODBC driver V3.1 49

Table 3. ODBC connection properties (continued)

Parameter name Description

Return Global Tables

Alias: RTGL

This parameter controls if global temporary tables are returned as normal
tables. If this parameter is set to YES, then global temporary tables are
treated as normal tables and be described as normal tables. If this parameter
is set to NO, then global temporary tables are handled as system tables. This
parameter is provided to allow standard ODBC tools to be used with global
temporary tables. Many of these tools bypass global temporary tables that
are described as global temporary tables. However, the same tools work
correctly with global temporary tables if they are described as normal tables.
The default is YES.

Return Logon Messages

Alias: LGMG

The driver should return logon messages to the application by using the
ODBC standard SQL_SUCCESS_WITH_INFO mechanism by default. Most
ODBC applications are coded to handle SQL_SUCCESS_WITH_INFO return
values and displaying a dialog can cause more problems than it helps for
most applications and thus this option should be hidden. In the rare cases
that an existing application cannot handle the SQL_SUCCESS_WITH_INFO
return value they can set this option to NO. The default is YES.

Return System Tables

Alias: RTSY

This parameter controls if system tables (SYSIBM) are returned as normal
tables. If this parameter is set to YES, then system tables are treated as
normal tables and be described as normal tables. If this parameter is set to
NO, then system tables are handled as system tables. This parameter is
provided to allow standard ODBC tools to be used with system tables. Many
of these tools bypass system tables that are described as system tables.
However, the same tools work correctly with system tables if they are
described as normal tables. The default is YES.

SBCS Mode

Alias: SBMD

This parameter is used to specify how SBCS data is handled. SBCS strings are
assumed to contain a mixture of single-byte characters and double byte
characters. Each set of DBCS characters starts with a SO and end with a SI
byte.

If BLANK is specified, all SO/SI bytes are converted to blanks.

If DELETE is specified, all SO/SI bytes are deleted from each string.

If BLANK is specified and RMBL=YES, then the SHIFT-OUT and SHIFT-IN
characters are converted to half-width blanks first, and then the RMBL=YES is
applied; deleting trailing half-width blanks.

DEFAULT is not supported currently.

Shadow Driver
Emulation Mode

Alias: SDEM

This parameter controls whether the Data Virtualization Manager ODBC
driver should work in the mode of compatibility with the Shadow server v7.x.
If this flag is set, then Data Virtualization Manager ODBC driver emulates
behavior of the Progress Shadow ODBC driver v7.x to be able to
communicate with the Shadow server v7.x. The default value is NO.

SQLExecute Connection
Check

Alias: EXCC

This parameter is used to force a connection check during SQLExecute
processing. When this parameter is set to YES, SQLExecute always return an
error condition if the connection has been reset or shut down by the server. If
this parameter is set to NO and prepare/open optimization is in effect,
SQLExecute will bypass the connection check and return SQL_SUCCESS. The
default is NO.

Subsystem

Alias: SUBSYS

This keyword specifies the DB2 subsystem. This keyword should only be set
if using DB2; otherwise this keyword must be set to NONE.

50 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

Table 3. ODBC connection properties (continued)

Parameter name Description

Suppress Decimal
Trailing Zeros

Alias: STZO

This parameter controls if trailing zeros should be removed from decimal
fields. The default is NO.

System Engineering
Value

Alias: SEVL

This parameter is set to various values to obtain diagnostic and debugging
data. This parameter should only be used at the specific request of the
Technical Support staff. The default is zero.

Table & Column Name
Modification

Alias: TCLM

This parameter controls adjustment of table and column names for DB2.
NONE implies that the names are considered correct and are not processed.
The default is NONE.

Table Filter

Alias: DP

This parameter is used to filter the table lists returned by the product. This
parameter restricts the information returned by catalog inquiries (SQLTables,
SQLColumns, SQLTablePrivileges). Only rows that match the table owner
pattern provided are returned. If this parameter is set to a single percent
sign, then all tables are returned. This parameter defaults to the current
userid or alternate userid.

Table Name Filter

Alias: TBFL

This parameter is used to filter the table names that are returned by the
product. This parameter is only used if it is set to a non-blank value and if the
host application does not provide a table name filter string. The table name
filter string from either the application or from this parameter restricts the
information that is returned by catalog inquiries (SQLTables, SQLColumns,
SQLTablePrivileges). Only rows that match the table name pattern that is
provided is returned. If this parameter is set to a single percent sign, then all
tables are returned. There is no default value for this parameter.

Table Owner – Synonym
Option

Alias: SYOP

This parameter is used to show how table owners should be handled for
tables that are actually synonyms. Some of these choices are required to
make specific desktop productivity tools work with the DVS Direct ODBC
driver. The default value is ZERO.

Table Qualifier Option

Alias: TQOP

This parameter is used to specify how Table Qualifiers should be returned to
ODBC application programs. Some databases use Table Qualifiers as part of
the overall name of each table. In other words, two tables can have exactly
the same name in all other respects, if their Table Qualifiers are different.
This parameter is used to control how Table Qualifier information is returned
to ODBC applications. There are three possible values. They are NORMAL,
NULL, and ZERO. The default is NULL.

Trace Options

Alias: TRACEFLAG

This parameter enables the options defined in the logging file.

Trace Path

Alias: TRACEPATH

This parameter specifies the path to the logging file.

Transaction Name

Alias: TRNA

This parameter is used to specify the transaction name. The use of the
transaction name is application-specific. The transaction name can be up to 8
bytes in length. The transaction name is padded on the right with blanks.

Truncate Literal String

Alias: TRLT

This parameter specifies whether literal parameters to stored procedures are
changed to parameter markers and sent to the server as bound parameters.
The default is YES.

Chapter 3. The ODBC driver V3.1 51

Table 3. ODBC connection properties (continued)

Parameter name Description

Truststore

Alias: TS

When using SSL, this parameter is the path that specifies the location of the
truststore file. The truststore file contains a list of the valid Certificate
Authorities (CAs) that are trusted by the client machine for SSL server
authentication.

Truststore Password

Alias: TSP

When using SSL and a PKCS12 encoded truststore, this parameter is the
password that is required to access the truststore.

Upcase All Character
Data

Alias: UPCH

This parameter controls if all character data sent to the host should be
converted to uppercase. If this parameter is set to YES, then all character
data is converted to uppercase. If this parameter is set to NO, then character
data is not converted to uppercase. The default is NO.

Upcase All Non-literals

Alias: UPNL

This parameter controls if all non-literal values in SQL statements passed to
the driver should be converted to uppercase. If this parameter is set to YES,
then strings not in single or double quotation marks are converted to
uppercase. The default is NO.

Upcase Double Quote
String

Alias: UPDB

This parameter controls if strings in double quotation marks should be
converted to uppercase. If this parameter is set to YES, then strings in double
quotation marks are converted to uppercase. If this parameter is set to NO,
then strings in double quotation marks are not modified. Strings must be
converted to uppercase in some cases because DB2 treats table names in
double quotation marks as literals and table names must be uppercase. The
default is NO.

Uppercasing Logon
Credentials

Alias: UCLC

This parameter is to allow the user to choose whether to uppercase userid/
password (and new password if specified) or leave as entered. The default is
YES, which means userid/password/new passwords are converted to
uppercase before sending to host. NO means the userid/password/new
password is left as entered.

User ID

Alias: UID

Identifier for user account on target database

Validate Server
Certificate

Alias: VSC

Set this parameter to YES (the default) to validate the security certificate of
the server as part of the SSL authentication handshake.

Wait for Transaction
Completion

Alias: WATR

This parameter controls if the client should wait for the Server to complete
transaction processing when connected in VCF mode (TRANSACTION,
TRANSBLOCK or MESSAGE). The default value is NO.

XML Describe Type

Alias: XMDT

This parameter determines whether the driver maps XML data type to -1
(SQL_LONGVARCHAR) or -4 (SQL_LONGVARBINARY) data type. The default
is -1 (SQL_LONGVARCHAR).

X/OPEN XA Support

Alias: XAEN

This parameter is used to set the XA Transaction Manager type. This
parameter must be set correctly when participating in a distributed
transaction that is coordinated by a monitor. MSDTC sets the manager to the
Microsoft Distributed Transaction Manager used mostly by MTS applications.
The default is NONE which means that this is not a distributed transaction.

52 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

Table 3. ODBC connection properties (continued)

Parameter name Description

Zero Column Names

Alias: ZECL

This parameter is set to YES if column names should be set to binary zeros.
This is a performance optimization for production applications. The default is
NO.

Connection pooling
For Windows, connection pooling is configured through the ODBC Data Source Administrator.

Procedure

1. Select the Connection Pooling tab.
2. Highlight the IBM Data Virtualization Manager for z/OS Driver entry.

Depending on the version of the Windows operating system, either

• Enable/disable connection pooling and set the retry wait time directly on the controls that are
displayed on the Connection Pooling tab, or

• Double-click the IBM Data Virtualization Manager for z/OS Driver entry and enable/disable pooling
and set the retry wait time in the pop-up window.

For UNIX/Linux, connection pooling is managed by the ODBC Driver Manager. A driver manager is not
included in the driver installation package; a third-party driver manager must be installed.

Optimized fetch
When optimized fetch is enabled, rows ahead of the current row are asynchronously extracted before the
client application requests them. This data is then returned to the client application in blocks that may be
as large as 32 KB. Enabling optimized fetch helps to minimize network traffic and speeds subsequent
fetches as the requested data is likely already in a returned block.

Optimized fetch is enabled either by including the RO=YES connection property in a connection string (a
connection string may be used with a DSN) or by appending the FOR FETCH ONLY clause to a SELECT
statement.

When optimized fetch is enabled, cursor that is based deletes (DELETE WHERE CURSOR OF) cannot be
used.

Chapter 3. The ODBC driver V3.1 53

54 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

Chapter 4. DS Client high-level API
Use the DS Client high-level API to process SQL requests between high-level language applications
running on z/OS and Data Virtualization Manager.

Data Virtualization Manager offers many ways to access virtualized data. The most popular are JDBC and
ODBC. Data Virtualization Manager also provides an API that can be called from within more traditional
mainframe languages such as COBOL, Natural or PL/I. This API is named the DS Client high-level API.

The DS Client high-level API allows an application running on z/OS to use a call-level interface to
communicate with Data Virtualization Manager to process SQL requests and to retrieve result sets.

Result sets are buffered in a 64-bit shared memory object. The API user can choose to process the data in
either of the following modes:

• Move mode. In move mode, the caller provides a buffer, and data is copied by the API from the memory
object to the caller’s buffer.

• Locate mode. In locate mode, the API is able to peek at the data and count the rows returned.

Load modules
The following table lists the name and location of the DS Client high-level API load modules.

Table 4. DS Client high-level API load modules

Description Load module or
ALIAS

hlq.SAVZLOAD hlqSAVZCLOD

Batch interface routine AVZCLIEN Yes

CICS PLT initialization routine AVZXMTRI Yes

CICS stub routine AVZCLIEN Yes

CICS task-related user exit AVZCTRUE Yes

Configuring access to DS Client for CICS
To use the DS Client API with CICS, you must modify your CICS configuration.

About this task
Configure CICS by modifying the CICS started task JCL, the program list table (PLT), and the DFHCSD file.

Procedure

1. Add the hlq.SAVZCLOD library to the DFHRPL concatenation in each CICS region that you want to
connect to the server.

2. Update and assemble the CICS program list table/program initialized (PLTPI) list for the DS Client
task-related user exit, as follows:
a) In the PLTPI list, locate the first DFHDELIM entry:

DFHPLT TYPE=ENTRY, PROGRAM=DFHDELIM

b) After the first DFHDELIM entry in the PLTPI list, add the following entry for the DS Client task-
related user exit:

DFHPLT TYPE=ENTRY, PROGRAM=AVZXMTRI

© Copyright IBM Corp. 2017, 2018 55

Note: The entry for the AVZXMTRI program must follow the first DFHDELIM entry in the PLTPI list
to ensure that the AVZXMTRI program will be executed in the second stage of the CICS PLTI
process.

c) Run the assembly job.
3. Update the DFHCSD file by performing the following steps:

a) For each CICS region, modify and submit the AVZCICSD job that is in hlq.SAVZCNTL data set.
b) Update LIST(YOURLIST) to match the startup group list for the CICS region.

4. Restart CICS and check for the following message in the CICS job log:

AVZ4459I CICSE DS Client exit program AVZCTRUE is enabled

AVZCLIEN

A DS Client high-level application is implemented by passing a parameter list on a set of calls to module
AVZCLIEN. The parameter list consists of the following:

1. DVCB control block address. The DVCB address is always required.
2. Send buffer address. The send buffer address is required for a SEND call and ignored for other calls.
3. Receive buffer address. The receive buffer address is required for a RECV call in move mode. A caller

in locate mode should pass a zero in this argument. For other calls, it is ignored.
4. Message buffer address. The message buffer address is optional for a RECV call. For other calls, it is

ignored.
5. SQLDA buffer address. The SQLDA buffer address is optional for a RECV call in move mode. A caller in

locate mode should pass a zero in this argument. For other calls, it is ignored.

The application can be linked with SDXMBIS, or LOAD the module and branch to it.

DVCB control block
The DS Client Control Block (DVCB) is the main control structure between the application and DS Client.

All DS Client calls require the address of a DVCB as the first argument in the parameter list.

The calling program needs to have a DVCB defined in its working storage.

DVCB fields

The following table provides a summary of the fields in the DVCB. The “IN/OUT” column tells whether the
field is input by the application, output by the API, or both input and output. The code in each column
representing an API call tells whether the field is (R)equired, (O)ptional, or (I)gnored.

Name Description IN/
OUT

OPEN SEND RECV CLOS

#DVCB-TAG Eyecatcher = ‘DVCB’ IN R R R R

#DVCB-TAG2 Eyecatcher = ‘DVCB’ IN R R R R

#DVCB-VERSION Control block version = 1 IN R R R R

#DVCB-SQL-CODE SQLCODE OUT I I I I

#DVCB-DATA-BUFFER-
LENGTH

Data buffer length (move
mode)

IN I I R I

56 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

Name Description IN/
OUT

OPEN SEND RECV CLOS

#DVCB-DATA-
RETURNED-LENGTH

Returned (or required)
data length

OUT I I I I

#DVCB-ROWS-
RETURNED

Number of rows returned OUT I I I I

#DVCB-REQUEST-CODE Four-character request
code

IN R R R R

#DVCB-SERVER-GROUP DS Client server group
name

IN O I I I

#DVCB-SSID Data Virtualization
Manager subsystem name

IN O I I I

#DVCB-USER-PARM A field for the user IN I I I I

#DVCB-OPT-RECV-MODE Receive mode option IN I I O I

#DVCB-OPT-AUTO-
COMMIT

Auto-commit option IN I O I I

#DVCB-OPT-CLOSE-
AFTER

Auto-close after request IN I O O I

#DVCB-OPT-SQLDA Request SQLDA IN I O I I

#DVCB-OPT-PRESERVE-
ORDER

Preserve row order with
MRC

IN O I O I

#DVCB-BLOCKING-
TIMEOUT

Timeout value for blocking
RECV

IN I I O I

#DVCB-SEND-LENGTH Length of SQL statement
string

IN I R I I

#DVCB-CNID Connection handle OUT/IN I R R R

#DVCB-RETURN-CODE API return code OUT I I I I

#DVCB-ROW-LENGTH Length of rows returned OUT I I I I

#DVCB-SQLDA-LENGTH SQLDA buffer length IN I I O

Note: Required
in move mode
when the fifth
argument
(SQLDA buffer
address) is non-
zero.

I

#DVCB-MESSAGE-
LENGTH

Message buffer length IN/
OUT

I I O

Note: Required
in move mode
when the fourth
argument
(message buffer
address) is non-
zero.

I

Chapter 4. DS Client high-level API 57

Name Description IN/
OUT

OPEN SEND RECV CLOS

#DVCB-ROW-RETURNED Row data is returned OUT I I I I

#DVCB-SQLCODE-
RETURNED

A SQLCODE is returned in
#DVCB-SQL-CODE

OUT I I I I

#DVCB-MESSAGE-
RETURNED

A message is returned OUT I I I I

#DVCB-SQLDA-
RETURNED

A SQLDA is returned OUT I I I I

#DVCB-END-OF-DATA End of data OUT I I I I

#DVCB-ERROR-
RETURNED

An API error is returned in
#DVCB-RETURN-CODE

OUT I I I I

#DVCB-PARMS-
RETURNED

Variables are returned
from a stored procedure

OUT I I I I

#DVCB-END-OF-RSET End of result set OUT I I I I

#DVCB-ROW-LIMIT Limit the number of rows IN I O I I

#DVCB-USERID User ID IN O I I I

#DVCB-PASSWORD Password IN O I I I

#DVCB-MAPREDUCE-ID Map Reduce Client id IN O I I I

#DVCB-MAPREDUCE-NO Map Reduce Client
number of threads

IN O I I I

Example

Following is the Natural data declaration of the DVCB.

* -- *
* --- DVCB API CONTROL BLOCK ---
* -- *
1 #DVCB (B1/1:256)
1 REDEFINE #DVCB
 2 #DVCB-TAG (A4) /* EYECATCHER (IN)
 2 #DVCB-VERSION (I2) /* MACRO VERSION (IN)
 2 #DVCB-RESERVED1 (A2) /* RESERVED
 2 #DVCB-SSID (A4) /* DVM SUBSYSTEM NAME (IN)
 2 #DVCB-REQUEST-CODE (A4) /* REQUEST CODE (IN)
 2 #DVCB-CNID (B16) /* CONNECTION HANDLE (OUT)
 2 REDEFINE #DVCB-CNID
 3 #DVCB-CONNECTION (B12)
 3 #DVCB-CONNECTED-SSID (A4)
 2 #DVCB-SERVER-GROUP (A8) /* DVM SERVER GROUP NAME (IN)
 2 #DVCB-USER-PARM (A8) /* A FIELD FOR THE USER
 2 #DVCB-SQL-CODE (I4) /* SQL CODE (OUT)
 2 #DVCB-DATA-BUFFER-LENGTH (I4) /* DATA BUFFER LENGTH (IN)
 2 #DVCB-DATA-RETURNED-LENGTH (I4) /* RETURNED DATA LENGTH (OUT)
 2 #DVCB-RESERVED2 (I4) /* RESERVED
 2 #DVCB-ROWS-RETURNED (I4) /* NUMBER OF ROWS RETURNED (OUT)
 2 #DVCB-OPTIONS (A8) /* OPTION FLAGS (IN)
 2 REDEFINE #DVCB-OPTIONS
 3 #DVCB-OPT-RECV-MODE (A1) /* LOCATE OR MOVE MODE
 3 #DVCB-OPT-AUTO-COMMIT (A1) /* SET AUTO-COMMIT
 3 #DVCB-OPT-CLOSE-AFTER (A1) /* CLOSE ON NEXT REQUEST
 3 #DVCB-OPT-RESERVED (A1) /* RESERVED
 3 #DVCB-OPT-SQLDA (A1) /* REQUEST SQLDA
 3 #DVCB-OPT-PRESERVE-ORDER (A1) /* PRESERVER ROW ORDER WITH MRC
 2 #DVCB-BLOCKING-TIMEOUT (I4) /* TIMEOUT FOR BLOCKING RECV (IN)
 2 #DVCB-SEND-LENGTH (I4) /* LENGTH OF SEND BUFFER (IN)
 2 #DVCB-RETURN-CODE (I4) /* RETURN CODE (OUT)
 2 #DVCB-DB2-SUBSYSTEM (A4) /* DB2 SUBSYSTEM NAME (IN)
 2 #DVCB-ROW-LENGTH (I4) /* LENGTH OF ROWS RETURNED (OUT)

58 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

 2 #DVCB-SQLDA-LENGTH (I4) /* SQLDA BUFFER LENGTH (IN)
 2 #DVCB-MESSAGE-LENGTH (I4) /* MESSAGE BUFFER LENGTH (IN)
 2 #DVCB-RESERVED3 (A50) /* RESERVED
 2 #DVCB-RETURN-FLAGS (A8) /* RETURN FLAGS (OUT)
 2 REDEFINE #DVCB-RETURN-FLAGS
 3 #DVCB-ROW-RETURNED (A1) /* ROW DATA IS RETURNED Y/N
 3 #DVCB-SQLCODE-RETURNED (A1) /* SQLCODE IS RETURNED Y/N
 3 #DVCB-MESSAGE-RETURNED (A1) /* MESSAGE IS RETURNED Y/N
 3 #DVCB-SQLDA-RETURNED (A1) /* SQLDA IS RETURNED Y/N
 3 #DVCB-END-OF-DATA (A1) /* END OF DATA IS RETURNED Y/N
 3 #DVCB-ERROR-RETURNED (A1) /* ERROR IS RETURNED Y/N
 3 #DVCB-PARMS-RETURNED (A1) /* DB2 ST PRC PARMS RETURNED Y/N
 3 #DVCB-END-OF-RSET (A1) /* END OF RSLTSET IS RETURNED Y/N
 2 #DVCB-RESERVED4 (A2) /* RESERVED
 2 #DVCB-ROW-LIMIT (I4) /* ROW LIMIT (IN)
 2 #DVCB-USERID (A8) /* CLIENT USERID OVERIDE (IN)
 2 #DVCB-PASSWORD (A8) /* CLIENT PASSWORD OVERRIDE (IN)
 2 #DVCB-MAPREDUCE-ID (I2) /* MAP REDUCE CLIENT ID (IN)
 2 #DVCB-MAPREDUCE-NO (I2) /* MAP REDUCE THREAD NO (IN)
 2 #DVCB-RESERVED4 (A64) /* RESERVED
 2 #DVCB-TAG2 (A4) /* STORAGE CHECK EYECATCHER (IN)
* --- DVCB API EQUATES BLOCK ---
1 #EYECATCHER (A4) CONST<'DVCB'>
1 #OPEN-REQUEST (A4) CONST<'OPEN'>
1 #CLOSE-REQUEST (A4) CONST<'CLOS'>
1 #SEND-REQUEST (A4) CONST<'SEND'>
1 #RECEIVE-REQUEST (A4) CONST<'RECV'>
1 #CLOSE-CONNECTION (A4) CONST<'Y'>
1 #LOCAL-MODE (A4) CONST<'L'>
1 #MOVE-MODE (A4) CONST<'M'>
1 #END-OF-RESULT (I4) CONST<2>
1 #ROW-RETURNED (L)
1 #SQLCODE-RETURNED (L)
1 #MESSAGE-RETURNED (L)
1 #SQLDA-RETURNED (L)
1 #END-OF-DATA (L)
1 #ERROR-RETURNED (L)
1 #CNID (B16) /* CONNECTION HANDLE (OUT)

DS Client requests

There are four request types supported by DS Client: OPEN, SEND, RECV, and CLOS.

OPEN

The OPEN request creates a session with the DS Client server, and obtains the shared memory object
used to buffer the result set(s). The server can be identified either by subsystem name or by server group
name. (The group name is configured in AVZSIN00 using parameter DSCLIENTGROUP. Connections to the
same server group are distributed in round-robin fashion.) The API will return a connection handle in
#DVCB-CNID; this handle must be maintained and returned on all subsequent API calls.

The OPEN call is optional. If a connection is not open when a request is sent, an implicit OPEN will be
performed.

The following options can be presented on the OPEN call:

• The subsystem name or group name that identifies the Data Virtualization Manager server.
• The Db2 subsystem name (or none to use SQL Engine).
• The row limit for the result set(s)
• The auto-commit option
• The request SQLDA option
• The user ID and password to be used for access to the data source. The default is the API application

user ID.

Chapter 4. DS Client high-level API 59

Providing alternate credentials

By default, the server will use the API application address space user ID to access the data source.
Alternate credentials can be provided in #DVCB-USERID and #DVCB-PASSWORD. If #DVCB-USERID is
non-zero, a password must be provided in #DVCB-PASSWORD. The application should clear #DVCB-
PASSWORD to zeros after the OPEN call.

Map Reduce Client

Map Reduce Client (MRC) technology provides the ability for a client application to process large requests
in parallel on multiple threads. Depending on the data source and the system architecture, significant
reductions in elapsed time can be achieved using MRC. The data source must be enabled for Map Reduce
in order to benefit from MRC.

To achieve end-to-end parallel processing using MRC, first determine the number of processing threads
to use. Start or attach this number of client threads, and open a DS Client connection on each thread. In
each DVCB, set #DVCB-MAPREDUCE-NO equal to the total number of threads. Set #DVCB-MAPREDUCE-
ID in each thread to a unique value 1 – n, where n is the value of #DVCB-MAPREDUCE-NO. Send the same
request on each client thread. The aggregate of all n composite result sets will be the complete result set
for the request.

Note: If Map Reduce is not enabled for the data source, the complete result set will be returned to the
thread which has specified #DVCB-MAPREDUCE-ID = 1. Threads 2 - n will immediately receive SQLCODE
100.

Map Reduce Client can also significantly reduce the elapsed time for large queries when running the
application on a single thread, especially for locate-mode requests, and move-mode requests for which
the row order is not essential. To use MRC on a single thread, set #DVCB-MAPREDUCE-NO equal to the
total number of server threads desired, and set #DVCB-MAPREDUCE-ID to zero. For move-mode
requests, set #DVCB-OPT-PRESERVE-ORDER to N if row order is not necessary. (The default is Y to
preserve the row order of the result set.)

Note: MRC with #DVCB-OPT-PRESERVE-ORDER = ‘Y’ is generally slower than the server’s normal Map
Reduce processing. Do not use this option unless row order is essential.

Example of an OPEN call in Natural

ASSIGN #DVCB-REQUEST-CODE = #OPEN-REQUEST
CALL 'AVZCLIEN' #DVCB(*) #SEND-AREA(*) #RECEIVE-AREA(*) #ERROR-AREA
 #SQLDA-AREA(*)

Connection handle

An explicit or implicit open creates a 16-byte connection handle, which is returned in field #DVCB-CNID.
The application is responsible to preserve this value and present it intact on all future API calls. If the
application must save and restore the connection handle, it must save the value after each OPEN or SEND
API call.

SEND

The SEND request must be the first request following OPEN. It communicates the SQL request to the
server. The SQL statement must be in the buffer pointed to by the second argument of the parameter list.
The request is passed to Data Virtualization Manager for processing, and the result set immediately
begins to flow into the shared memory object.

The send request places the session in request received state. When the request completes, the session is
reverted to open state, at which time another SEND request may be made, or a CLOS request sent to close
the session.

The following options can be presented on the SEND call:

60 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

• The Db2 subsystem name (or none to use SQL Engine).
• The row limit for the result set(s)
• The auto-commit option
• The request SQLDA option

Setting the DB2 Subsystem name

The Db2 subsystem name is set by putting the four-character subsystem name in field DVCBDB2S. It can
be set on the OPEN call, and changed on the SEND call. If DVCBDB2S is binary zeros or blanks, the
request will be processed by z/SQL. To remove a DB2 subsystem name from a previous query, move
binary zeros or EBCDIC blank characters to DVCBDB2S.

Requesting auto-commit

To turn auto-commit on, set #DVCB-OPT-AUTO-COMMIT to A before calling SEND. An implicit commit
will be performed after each update request. To turn auto-commit off, set #DVCB-OPT-AUTO-COMMIT to
N.

Example of a SEND call

 ASSIGN #DVCB-REQUEST-CODE = #SEND-REQUEST
 ASSIGN #DVCB-SEND-LENGTH = #SEND-LENGTH
 CALL 'AVZCLIEN' #DVCB(*) #SEND-AREA(*) #RECEIVE-AREA(*) #ERROR-AREA
 #SQLDA-AREA(*)

RECV

The RECV request reads the result set data from the shared memory object. A SQLDA is also optionally
returned. In move mode, the data is copied to the buffer pointed to by the third argument of the
parameter list.

The session must be in request received state when the RECV request is made.

The RECV call will return when the caller’s buffer is full, when the current result set is exhausted, or when
an error occurs. To reduce the number of RECV calls required, make the data buffer as large as possible.

The buffer must be large enough to hold at least one complete row, or an error (40) will be returned in
#DVCB-RETURN-CODE. When this happens, the required buffer size will be returned in #DVCB-DATA-
RETURNED-LENGTH. The application should obtain a buffer of at least this size, update #DVCB-DATA-
BUFFER-LENGTH with the new length, and retry the request, passing the address of the new buffer. The
buffer length can be set to zero to request only a SQLDA and no row data. In this case, the return code will
be zero.

The following options can be presented on the RECV call:

• An optional timeout.
• Auto-close after request completion.

Rows are returned in a fixed length, with all variables padded to their maximum length. The row size is
returned, along with the number of rows, the first-row address, and the SQLCODE.

SQLDA-format data

A SQLDA is needed to process the rows. SQLDATA and SQLIND in the returned SQLDA hold the offsets
into the row of the column data and the null indicator. A null column is indicated by a combination of an
odd value in SQLTYPE, and a value of x’FFFF’ in the area indicated by SQLIND.

Note: The value of SQLIND is always 0 in the first variable. The SQLTYPE field must be examined to
determine the significance of SQLIND.

Chapter 4. DS Client high-level API 61

Return signals

The API returns signals, or flags, in the DVCB from each RECV call to indicate the returned data and
indicators. All signals should be processed in turn before the next RECV call.

Signal Description

#DVCB-ROW-RETURNED = ‘Y’ One or more rows are returned in the area pointed
to by the third argument of the calling parameter
list. Use #DVCB-ROWS-RETURNED and #DVCB-
ROW-LENGTH to process the rows.

Note: This flag is not set in locate mode.

#DVCB-MESSAGE-RETURNED = ‘Y’ A message is returned from the server in the area
pointed to by the fourth argument of the calling
parameter list. The length of the message text is in
#DVCB-MESSAGE-LENGTH. Print or display the
message before continuing.

#DVCB-SQLDA-RETURNED = ‘Y’ A SQLDA is returned in the area pointed to by the
fifth argument of the calling parameter list.

#DVCB-ERROR-RETURNED = ‘Y’ An error is returned from the API. Check the return
code in #DVCB-RETURN-CODE. Most errors are
permanent; these will be accompanied by the end-
of-data signal. Requests that result in transient
errors, such as when the buffer is too small (return
code 40) can be retried.

#DVCB-PARMS-RETURNED = ‘Y’ A stored procedure has returned parameter data.
The parameters will be presented on the first RECV
call as a single row of data. Flag #DVCB-ROW-
RETURNED will also be set to Y. The row will
contain all parameters, including IN parameters, in
the order they are defined on the CREATE
statement. IN parameters will be null.

#DVCB-END-OF-RSET = ‘Y’ When the end of a result set is reached, return flag
#DVCB-END-OF-RSET will be set toY. If #DVCB-
END-OF-DATA is set to N, there are more result
sets to follow.

#DVCB-END-OF-DATA = ‘Y’ The request is complete and no more data is
available. Check #DVCB-ERROR-RETURNED or
#DVCB-SQLCODE-RETURNED to determine the
reason for the end of data.

#DVCB-SQLCODE-RETURNED = ‘Y’ A SQLCODE is available in #DVCB-SQL-CODE.

Note: Multiple signals can be returned together. It is essential, for instance, to check #DVCB-ROW-
RETURNED and process the data returned before checking #DVCB-END-OF-DATA.

Example of a move-mode RECV call

ASSIGN #DVCB-REQUEST-CODE = #RECEIVE-REQUEST
ASSIGN #DVCB-DATA-BUFFER-LENGTH = #RECEIVE-LENGTH
CALL 'AVZCLIEN' #DVCB(*) #SEND-AREA(*) #RECEIVE-AREA(*) #ERROR-AREA
 #SQLDA-AREA(*)

62 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

CLOS

The CLOS request destroys the session and frees all shared resources obtained by the API for the
connection.

The CLOS call is optional. If #DVCB-OPT-CLOSE-AFTER is set to Y, the connection will be implicitly closed
after completion of the current request.

Example of a CLOS call

ASSIGN #DVCB-REQUEST-CODE = #CLOSE-REQUEST
CALL 'AVZCLIEN' #DVCB(*) #SEND-AREA(*) #RECEIVE-AREA(*) #ERROR-AREA
 #SQLDA-AREA(*)

Idle timeout

A DS Client connection that is idle for a prolonged period will be timed out by the server. The timeout
threshold is configured in AVZSIN00 using the DSCLIENTCONNTIMEOUT parameter.

When a session times out, the shared memory object is detached. Subsequent RECV calls will fail with a
no-connection error (return code 32). A new connection can be created with an OPEN or SEND call.

API return codes

The following return codes are returned from DS Client. The return code is moved into DVCBRETC, and is
also in general register 15 on return from the DS Client call.

Return
code

Description

2 This code is returned if a SQL code is returned from a RECV operation. Check the value in
#DVCB-SQL-CODE.

This code is returned when the request is ended. The session is reverted to open state, and
the next request should be SEND or CLOS. A RECV call following this code will be rejected with
a state error.

8 This code is returned if DS Client is not active in the server. DS Client is activated using the
DSCLIENTACTIVE parameter in AVZSIN00.

12 This code is returned if storage is not available in the DS Client server to process the request.

16 This code is returned if the DS Client server is not able to obtain or share the memory object
buffer.

20 This code is returned if no DS Client server is available to process the request, or if the
specified server does not support DS Client.

24 This code is returned if the server timed the session out for inactivity. The timeout time is set
with the DSCLIENTCONNTIMEOUT parameter in AVZSIN00.

32 This code is returned if the session indicated by the connection handle is not found in the
server.

Chapter 4. DS Client high-level API 63

Return
code

Description

36 This code is returned if a request is made while the connection is in the wrong state. The state
requirements are discussed under the individual requests.

40 This code is returned if the data to be returned is too large for the buffer. This code can be
returned on a RECV call in move mode. The required buffer size will be in #DVCB-DATA-
RETURNED-LENGTH. Provide a larger buffer, put its size in #DVCB-DATA-BUFFER-LENGTH,
and retry the request.

44 This code is returned if the caller supplied a timeout value, and the RECV call timed out while
waiting for data.

56 This code is returned if a shared memory object is required, but a recovery environment
cannot be built to ensure the SMO is freed.

60 This code is returned if the required SQL statement length #DVCB-SEND-LENGTH is not
provided on a SEND.

64 This code is returned if #DVCB-TAG2 is not DVCB.

68 This code is returned if a RECV request is made in move mode, and the receive buffer address
in the parameter list is zero, or the buffer length in #DVCB-DATA-BUFFER-LENGTH is zero.

72 This code is returned if a RECV request is made in locate mode but the connection was opened
in move mode.

80 This code is returned if the request code in #DVCB-REQUEST-CODE is unrecognized.

84 This code is returned if the SQLDA to be returned is too large for the buffer. This code can be
returned on a RECV call in move mode. If the buffer is at least 16 bytes, the SQLDA prolog will
be copied into it. The required SQLDA size will be in field SQLDABC. Obtain a larger buffer,
provide its length in #DVCB-SQLDA-LENGTH, and retry the request.

88 This code is returned if the value of #DVCB-TAG is something other than C'DVCB'.

92 This code is returned if the value of #DVCB-VERSION is not supported by the API.

100 This code represents an internal error.

104 This code is returned if a user ID is provided in #DVCB-USERID without a password in #DVCB-
PASSWORD.

108 This code is returned if an error is found in the Map Reduce Client fields on the OPEN call:

• #DVCB-MAPREDUCE-ID is greater than #DVCB-MAPREDUCE-NO, or
• #DVCB-MAPREDUCE-NO is non-zero but #DVCB-MAPREDUCE-ID is zero, or
• #DVCB-MAPREDUCE-NO is greater than the value of ACIMAPREDUCECLIMAX in AVZSIN00.

116 This code is returned on an OPEN call if there is an incompatibility between the API and the
server.

120 This code is returned when a non-recoverable error occurs while processing the request. A
SQL code is returned in XMPLSQLC. The server ends the session. The application should close
the connection.

64 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

Return
code

Description

124 This code is returned if the security environment is invalid.

128 This code is returned when an abnormal termination occurs in the server while processing the
request.

DS Client configuration

The following Data Virtualization Manager server configuration options affect DS Client operations. The
required parameters are DSCLIENTACTIVE and LICENSECODE. The rest are optional.

Parameter Description Values

ACIDVCLIENTMIN Controls the number of internal ACI servers to
keep active for future DS Client requests.

servers

Default: 2.
Minimum: 1
Maximum: 10000

ACIMAPREDUCECLIMAX Specifies the maximum number of MAP REDUCE
tasks that will be started to process a request
from a DS Client application. Specify 0 to
disable MAP REDUCE CLIENT.

Default: 20
Minimum: 0
Maximum: 255

DSCLIENTACTIVE Controls whether or not the DS Client server will
be activated. This parameter is required.

YES|NO

DSCLIENTBUFFERSIZE Specifies the default buffer size, in megabytes
above the bar, for a DS Client API connection.

megabytes

DSCLIENTBUFFERNUMMAX Specifies the maximum number of buffers to
allow for a DS Client connection. The total
maximum storage obtained will be =
(DSCLIENTBUFFERSIZEMAX *
DSCLIENTBUFFERNUMMAX).

buffers

Default: 1

DSCLIENTBUFFERSIZEMAX Specifies the maximum buffer size, in
megabytes above the bar, for a DS Client
connection. The buffer size requested by the
application (if any) is negotiated against this
value.

megabytes

DSCLIENTBUFFERSIZEMIN Specifies the minimum buffer size, in
megabytes above the bar, for a DS Client
connection. The buffer size requested by the
application (if any) is negotiated against this
value.

megabytes

DSCLIENTCONNTIMEOUT Specifies the maximum time, in minutes, a
session will remain idle before the server closes
it.

minutes

DSCLIENTGROUP Allows the DS Client user to choose a server
group to use for DS Client access. One or more
DS Client servers can be configured with the
same group name, and DS Client will distribute
connections in round robin.

group name

Chapter 4. DS Client high-level API 65

Parameter Description Values

DSCLIENTNUMROWSMAX Specifies the maximum number of rows that
may be requested for each RECV call on a DS
Client connection.

rows

DSCLIENTSPMDCACHEMAX Specifies the maximum number of entries to
maintain in the stored procedure metadata
cache.

entries

Maximum: 32767

DSCLIENTSPMDCACHEMIN Specifies the minimum number of entries to
maintain in the stored procedure metadata
cache. Specify zero to disable metadata
caching.

entries

DSCLIENTTRACE Controls whether the DS Client server will trace
its internal state changes.

YES|NO

DSCLIENTTRACEDB Controls whether DS Client processing will trace
debugging messages.

YES|NO

DSCLIENTTRACESQL If set to YES, formats all the related SQL blocks
to Trace Browse after each DS Client SQL
request.

YES|NO

LICENSECODE DS Client is a licensed feature. The
LICENSECODE must support DS Client. This
parameter is required.

code

Batch program execution

The method to invoke an existing module that uses Data Virtualization Manager as well does not change,
so no special instructions are needed.

More specifically, the invocation of a module will also stay the same for modules running in BMP regions
or modules attaching to Db2 for z/OS.

In this example, the module is called using EXEC PGM=, which does not require a BMP region or a
connection to Db2 for z/OS.

//STEP1 EXEC PGM=module,REGION=4096K
//STEPLIB DD DSN=APPL.LOADLIB,DISP=SHR
// DD DSN=DVM.SAVZLOAD,DISP=SHR

Example: Using Data Virtualization Manager in a COBOL program
This example shows how a non-relational data source can be accessed via SQL from a COBOL program
using the DS Client high-level API.

About this example

Assume that you have a VSAM data set that has been virtualized as a virtual table STAFFVS, and you need
to access it from a program that is written in a high-level language such as COBOL.

Data Virtualization Manager offers a DS Client high-level language API through the program AVZCLIEN
that is utilized with this sequence of requests:

1. Open a connection to the Data Virtualization Manager server
2. Send the SQL command to the Data Virtualization Manager server

66 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

3. Receive the data back from the Data Virtualization Manager server until all data of this SQL command
is received

4. Close the connection to the Data Virtualization Manager server

When multiple SQL commands are needed, each of them must be completely received before the next
one can be sent. For more information, see “Multiple SQL commands” on page 70.

The program’s data structures

The COBOL program needs to have a DS Client Control Block (DVCB) defined in its working storage and a
copy book can be used for that. See “Example: DS Client control block (DVCB)” on page 71.

Various other variables are also needed and they are discussed when they are referenced. See “Other
useful variables” on page 71.

Program preparation

The program should be compiled without any specific options.

The program should be linked as follows:

//SYSLIB DD DSN=DVM.SAVZLOAD,DISP=SHR
//SYSLMOD DD DSN=APPL.LOADLIB,DISP=SHR
//SYSIN DD *
INCLUDE SYSLIB(AVZCLIEN)
NAME module(R)

AVZCLIEN is to be found in the Data Virtualization Manager SAVZLOAD library.

Batch program execution

The method to invoke an existing module that uses Data Virtualization Manager as well does not change,
so no special instructions are needed.

More specifically, the invocation of a module will also stay the same for modules running in BMP regions
or modules attaching to Db2 for z/OS.

In this example, the module is called using EXEC PGM=, which does not require a BMP region or a
connection to Db2 for z/OS.

//STEP1 EXEC PGM=module,REGION=4096K
//STEPLIB DD DSN=APPL.LOADLIB,DISP=SHR
// DD DSN=DVM.SAVZLOAD,DISP=SHR

OPEN request

The following example shows an OPEN request:

MOVE 'AVZC' TO DVCB-SSID.
MOVE MESSAGE-LENGTH TO DVCB-MESSAGE-LENGTH.
MOVE FCT-OPEN TO DVCB-REQUEST-CODE.
MOVE 'Y' TO DVCB-OPT-SQLDA.
MOVE SQLDA-LENGTH TO DVCB-SQLDA-LENGTH.
CALL 'AVZCLIEN' USING DVCB SEND-AREA RECEIVE-AREA
ERROR-AREA SQLDA-AREA.
PERFORM 5000-CHECK-RESPONSE.

Notes:

• The first MOVE identifies the name of the Data Virtualization Manager server that you will work with.
• The second MOVE initializes the message length that will be passed to the server
• The third MOVE will put OPEN in the request.
• The fourth MOVE tells the server that, upon RECV time, metadata information (mostly for debugging)

must be returned in the area that is identified by the fifth parameter of the CALL. Metadata is returned

Chapter 4. DS Client high-level API 67

for each column in the result set. See “Example: DS Client control block (DVCB)” on page 71 for the
structure of this area.

• The fifth MOVE sets the length of this area of metadata information.

The OPEN request will initiate the communication with the Data Virtualization Manager server through the
API called AVZCLIEN.

After the CALL statement is executed, the various one-byte fields in the DVCB-RETURN-FLAGS group of
the DVCB can be tested for a Y value. See the contents of a sample paragraph 5000-CHECK-RESPONSE in
“Typical error checking” on page 72.

Note that a Y for such a flag is not necessarily an error (they are informational), except for DVCB-ERROR-
RETURNED which might be a reason to stop the execution of the program.

The following points are about the metadata information in SQLDA-AREA (the fifth parameter of the
CALL):

• The header is 16 bytes long, where SQLDAID is an eye-catcher with the value SQLDA and SQLDABC
contains the total length of SQLDA as returned by the server.

• Each repeating SQLVAR group (44 bytes long) has the name of the column in SQLNAME and the length
of the name in SQLNAME-LENGTH.

SEND request

The following example shows a SEND request:

MOVE FCT-SEND TO DVCB-REQUEST-CODE.
MOVE SEND-LENGTH TO DVCB-SEND-LENGTH.
CALL 'AVZCLIEN' USING DVCB SEND-AREA RECEIVE-AREA
ERROR-AREA SQLDA-AREA.
PERFORM 5000-CHECK-RESPONSE.

Notes:

• The first MOVE will put SEND in the request.
• The second MOVE initializes the length of SEND-AREA into the DVCB, in practice the length of the SQL

command. SEND-AREA is a placeholder for the SQL command that you want to pass to the Data
Virtualization Manager server.

Again, check for eventual return information with 5000-CHECK-RESPONSE in “Typical error checking” on
page 72.

You must build the SQL command yourself in your COBOL program, maybe using character functions in
the COBOL language. An example is shown as follows:

STRING
"SELECT STAFFVS_KEY_ID,"
DELIMITED BY SIZE
" STAFFVS_DATA_NAME,"
DELIMITED BY SIZE
" STAFFVS_DATA_DEPT,"
DELIMITED BY SIZE
" STAFFVS_DATA_JOB,"
DELIMITED BY SIZE
" STAFFVS_DATA_YRS"
DELIMITED BY SIZE
" FROM STAFFVS"
DELIMITED BY SIZE
INTO SQL-TEXT.

This example results in the following SQL command being sent:

SELECT STAFFVS_KEY_ID, STAFFVS_DATA_NAME, STAFFVS_DATA_DEPT, STAFFVS_DATA_JOB,
 STAFFVS_DATA_YRS FROM STAFFVS

where STAFFVS is the virtualized table.

68 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

For this example, the length of SQLDA-AREA as returned by the server in SQLDABC is 236 (hex EC): a
fixed header of 16 bytes and five groups of 44 bytes. The following example shows a hexadecimal
representation of SQLDA-AREA (first repeating group only):

=COLS> ----+----1----+----2----+----3----+----4----+----5----+----6
SQLDA \ 4 STAFFVS_KEY_ID
EDDCC444000E00000F000000000000EECCCEE6DCE6CC4444444444444444
28341000000C05051402000000000E2316652D258D940000000000000000

RECEIVE request

Data Virtualization Manager stores the results of the SQL command in the storage of the Data
Virtualization Manager started task. Those results must be transferred into the program’s working
storage. As the program’s working storage normally is much smaller than the server storage, you must
request reception of the server’s results in a repetitive process until Data Virtualization Manager tells you
that all data has been received. This concept can be compared to using multi-row fetch from an
application with Db2 for z/OS.

The following example shows a way to receive the results repetitively:

PERFORM 4000-PROCESS-RESULTS
UNTIL DVCB-END-OF-DATA = 'Y'
OR DVCB-ERROR-RETURNED = 'Y'.

UNTIL forces at least one execution of 4000-PROCESS-RESULTS.

The following example shows a code snippet to process the result set:

**
4000-PROCESS-RESULTS.
**
* UNCOMMENT THE COMMENTS TO SHOW ONLY FIRST RESULT SET *
**
MOVE 0 TO DVCB-ROWS-RETURNED.
PERFORM 3000-GET-RESULTS.
DISPLAY 'RESULT-SET #' RESULT-SET-NUMBER
PERFORM TEST AFTER VARYING W1 FROM 1 BY 1
UNTIL W1 = DVCB-ROWS-RETURNED
DISPLAY DVC-ID (W1) ' '
DVC-NAME (W1) ' '
DVC-DEPT (W1) ' '
DVC-JOB (W1) ' '
DVC-YEARS (W1) ' '
END-PERFORM
ADD 1 TO RESULT-SET-NUMBER.

Paragraph 4000-PROCESS-RESULTS is executed until Data Virtualization Manager communicates the
end of the Data Virtualization Manager result set or the presence of an error.

Inside 4000-PROCESS-RESULTS, some of the coding is for data processing after data has been received.
The data is received with the execution of paragraph 3000-GET-RESULTS.

**
3000-GET-RESULTS.
**
MOVE FCT-RECEIVE TO DVCB-REQUEST-CODE.
MOVE RECEIVE-LENGTH TO DVCB-DATA-BUFFER-LENGTH.
CALL 'AVZCLIEN' USING DVCB SEND-AREA RECEIVE-AREA
ERROR-AREA SQLDA-AREA.
PERFORM 5000-CHECK-RESPONSE.
DISPLAY 'NUMBER OF ROWS IN BUFFER:' DVCB-ROWS-RETURNED.
DISPLAY 'ROW LENGTH:' DVCB-ROW-LENGTH.
ADD DVCB-ROWS-RETURNED TO TOTAL-ROWS.

The first MOVE will put RECV in the request and the second MOVE initializes the length of RECEIVE-AREA
into the DVCB. This length should be greater than the largest row returned.

RECEIVE-AREA will receive the data back. Note that RECEIVE-AREA can receive many rows of the Data
Virtualization Manager result set.

Chapter 4. DS Client high-level API 69

In this example, the RECEIVE-AREA has 200 positions that can hold 10 rows of the Data Virtualization
Manager result set (one row is 20 positions). The first execution of 3000-GET-RESULTS will return the
rows 1 to 10, and the fourth execution will return rows 31 to 35 (as there are 35 rows in the result set).

The number of rows returned is in DVCB-ROWS-RETURNED.

CLOSE request

The CLOSE request is not required when the field DVCB-OPT-CLOSE-AFTER has been set to Y.

This can be achieved with the following code example:

MOVE OPT-AUTOCLOSE TO DVCB-OPT-CLOSE-AFTER.

This is an indication that the connection to the Data Virtualization Manager server is automatically closed
when the RECV request has delivered all rows of the server’s result set.

The following example shows the CLOSE request if AUTOCLOSE is not used:

**
* CLOSE CONNECTION TO DV SERVER *
**
9000-CLOSE.
MOVE MESSAGE-LENGTH TO DVCB-MESSAGE-LENGTH.
MOVE FCT-CLOSE TO DVCB-REQUEST-CODE.
CALL 'AVZCLIEN' USING DVCB SEND-AREA RECEIVE-AREA
ERROR-AREA SQLDA-AREA.
PERFORM 5000-CHECK-RESPONSE.

Multiple SQL commands

Assume that an application needs to select some clients and read the orders for these clients.

Technically, the program must RECEIVE all these clients. For each client in the RECEIVE-AREA1 it needs
to issue another SQL command statement in the order database and to process these orders as they
come into the RECEIVE-AREA2.

Note that the API of this Data Virtualization Manager client uses a stateful protocol, and that you cannot
send another SQL statement on the same open connection until you have completed receiving the result
set from the current SQL statement.

However, one can have as many open connections as needed. The application must manage two
connections, each with its own DVCB: one for clients, another for orders.

Processing logic is then as follows:

1. Obtain two DVCBs: CLIENTS-DVCB and ORDERS-DVCB
2. Call OPEN twice (once for CLIENTS-DVCB and once for ORDERS-DVCB)
3. Call SEND for the CLIENTS fetch, using CLIENTS-DVCB
4. Call RECV, pointing to CLIENTS-DVCB
5. Scan the clients in the CLIENTS buffer and for each client:

a. Call SEND for the ORDERS fetch, using ORDERS-DVCB
b. Call RECV, using ORDERS-DVCB
c. Process the orders returned in the ORDERS receive buffer
d. Loop to 5.b until EndOfData is returned in the ORDERS-DVCB
e. Locate the next client in the CLIENTS buffer
f. Return to step 5a.

6. When the CLIENTS buffer is exhausted, return to step 4
7. When EndOfData is returned in the CLIENTS-DVCB, call CLOS twice (once for CLIENTS-DVCB and once

for ORDERS-DVCB)

70 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

Example: DS Client control block (DVCB)

000100**00010000
000200* *00020000
000300* COPYRIGHT ROCKET SOFTWARE, INC. 1991, 2016. *00030001
000400* *00040000
000500**00050000
000600 01 DVCB. 00060000
000700 03 DVCB-TAG PIC X(4) VALUE 'DVCB'. 00070000
000800 03 DVCB-VERSION PIC X(2) VALUE X'0001'. 00080000
000900 03 DVCB-RESERVED1 PIC X(2). 00090000
001000 03 DVCB-SSID PIC X(4). 00100000
001100 03 DVCB-REQUEST-CODE PIC X(4). 00110000
001200 03 DVCB-CNID. 00120000
001300 05 DVCB-CONNECTION PIC X(12). 00130000
001400 05 DVCB-CONNECTED-SSID PIC X(4). 00140000
001500 03 DVCB-SERVER-GROUP PIC X(8). 00150000
001600 03 DVCB-USER-PARM PIC X(8). 00160000
001700 03 DVCB-SQL-CODE PIC S9(5) COMP. 00170000
001800 03 DVCB-DATA-BUFFER-LENGTH PIC S9(5) COMP. 00180000
001900 03 DVCB-DATA-RETURNED-LENGTH PIC S9(5) COMP. 00190000
002000 03 DVCB-RESERVED2 PIC S9(5) COMP. 00200000
002100 03 DVCB-ROWS-RETURNED PIC S9(5) COMP. 00210000
002200 03 DVCB-OPTIONS. 00220000
002300 05 DVCB-OPT-RECV-MODE PIC X(1). 00230000
002400 05 DVCB-OPT-AUTO-COMMIT PIC X(1). 00240000
002500 05 DVCB-OPT-CLOSE-AFTER PIC X(1). 00250000
002600 05 DVCB-OPT-REFORMAT PIC X(1). 00260000
002700 05 DVCB-OPT-SQLDA PIC X(1). 00270000
002800 05 DVCB-OPT-RESERVED PIC X(3). 00280000
002900 03 DVCB-BLOCKING-TIMEOUT PIC S9(5) COMP. 00290000
003000 03 DVCB-SEND-LENGTH PIC S9(5) COMP. 00300000
003100 03 DVCB-RETURN-CODE PIC S9(5) COMP. 00310000
003200 03 DVCB-DB2-SUBSYSTEM PIC X(4). 00320000
003300 03 DVCB-ROW-LENGTH PIC S9(5) COMP. 00330000
003400 03 DVCB-SQLDA-LENGTH PIC S9(5) COMP. 00340000
003500 03 DVCB-MESSAGE-LENGTH PIC S9(5) COMP. 00350000
003600 03 DVCB-MAP-NAME PIC X(50). 00360000
003700 03 DVCB-RETURN-FLAGS. 00370000
003800 05 DVCB-ROW-RETURNED PIC X(1). 00380000
003900 05 DVCB-SQLCODE-RETURNED PIC X(1). 00390000
004000 05 DVCB-MESSAGE-RETURNED PIC X(1). 00400000
004100 05 DVCB-SQLDA-RETURNED PIC X(1). 00410000
004200 05 DVCB-END-OF-DATA PIC X(1). 00420000
004300 05 DVCB-ERROR-RETURNED PIC X(1). 00430000
004400 05 DVCB-PARMS-RETURNED PIC X(1). 00440000
004500 05 DVCB-END-OF-RSET PIC X(1). 00450000
004600 03 DVCB-RESERVED3 PIC X(2). 00460000
004700 03 DVCB-ROW-LIMIT PIC S9(5) COMP. 00470000
004800 03 DVCB-USERID PIC X(8). 00480000
004900 03 DVCB-PASSWORD PIC X(8). 00490000
005000 03 DVCB-MAPREDUCE-ID PIC X(2). 00500000
005100 03 DVCB-MAPREDUCE-NO PIC X(2). 00510000
005200 03 DVCB-RESERVED4 PIC X(64). 00520000
005300 03 DVCB-TAG2 PIC X(4) VALUE 'DVCB'. 00530000
005400 01 FCT-SEND PIC X(4) VALUE 'SEND'. 00540000
005500 01 FCT-RECEIVE PIC X(4) VALUE 'RECV'. 00550000
005600 01 FCT-OPEN PIC X(4) VALUE 'OPEN'. 00560000
005700 01 FCT-CLOSE PIC X(4) VALUE 'CLOS'. 00570000
005800 01 OPT-AUTOCLOSE PIC X VALUE 'Y'. 00580000
005900 01 OPT-LOCAL-MODE PIC X VALUE 'L'. 00590000
006000 01 OPT-MOVE-MODE PIC X VALUE 'M'. 00600000

Other useful variables

003300 01 SEND-LENGTH PIC S9(5) COMP VALUE 400. 00330000
003400 01 RECEIVE-LENGTH PIC S9(5) COMP VALUE 200. 00340013
003500 01 MESSAGE-LENGTH PIC S9(5) COMP VALUE 40. 00350000
003600 01 SQLDA-LENGTH PIC S9(5) COMP VALUE 1000. 00360000
003700 01 ERROR-AREA. 00370000
003800 02 ERROR-AREA1 PIC X(40) VALUE IS SPACES. 00380000
003900 01 SEND-AREA. 00390000
004000 02 SQL-TEXT PIC X(400) VALUE IS SPACES. 00400000
004100 01 SQLDA-AREA. 00410000
004200 02 SQLDAID PIC X(8). 00420000
004300 02 SQLDABC PIC S9(5) COMP. 00430000
004400 02 SQLN PIC S9(4) COMP. 00440000
004500 02 SQLD PIC S9(4) COMP. 00450000

Chapter 4. DS Client high-level API 71

004600 02 SQLVAR OCCURS 100. 00460000
004700 05 SQLTYPE PIC S9(4) COMP. 00470000
004800 05 SQLLEN PIC S9(4) COMP. 00480000
004900 05 SQLDATA PIC S9(5) COMP. 00490000
005000 05 SQLIND PIC S9(5) COMP. 00500000
005100 05 SQLNAME-LENGTH PIC S9(4) COMP. 00510000
005200 05 SQLNAME PIC X(30). 00520000
005300 01 RECEIVE-AREA. 00530000
005400 02 RECORD-SET PIC X(200). 00540013
005500 02 RECORD-OUT REDEFINES RECORD-SET OCCURS 10 TIMES. 00550013
005600 05 DVC-ID PIC S9(4) COMP. 00560000
005700 05 DVC-NAME PIC X(9). 00570000
005800 05 DVC-DEPT PIC S9(4) COMP. 00580000
005900 05 DVC-JOB PIC X(5). 00590000
006000 05 DVC-YEARS PIC S9(4) COMP. 00600000

Typical error checking

014400**01540000
014500 5000-CHECK-RESPONSE. 01550000
014600**01560000
014700 EVALUATE TRUE 01570000
014800 WHEN DVCB-ROW-RETURNED = 'Y' 01580000
014900 DISPLAY 'ROW RETURNED: TRUE' 01590000
015000 WHEN DVCB-SQLCODE-RETURNED = 'Y' 01600000
015100 DISPLAY 'SQLCODE RETURNED: TRUE' 01610000
015200 DISPLAY 'SQLCODE:' DVCB-SQL-CODE 01620000
015300 WHEN DVCB-MESSAGE-RETURNED = 'Y' 01630000
015400 DISPLAY 'MESSAGE RETURNED: TRUE' 01640000
015500 DISPLAY 'MESSAGE:' ERROR-AREA 01650000
015600 WHEN DVCB-SQLDA-RETURNED = 'Y' 01660000
015700 DISPLAY 'SQLDA RETURNED: TRUE' 01670000
015800 WHEN DVCB-END-OF-DATA = 'Y' 01680000
015900 DISPLAY 'END-OF-DATA RETURNED: TRUE' 01690000
016000 WHEN DVCB-ERROR-RETURNED = 'Y' 01700000
016100 DISPLAY 'ERROR RETURNED: TRUE' 01710000
016200 PERFORM 6000-WRITE-ERROR 01720000
016300 WHEN DVCB-PARMS-RETURNED = 'Y' 01730000
016400 DISPLAY 'IN/OUT PARMS RETURNED: TRUE' 01740000
016500 WHEN DVCB-END-OF-RSET = 'Y' 01750000
016600 DISPLAY 'END OF RESULT-SET RETURNED: TRUE' 01760000
016700 WHEN OTHER 01770000
016800 DISPLAY 'NO RESPONSE FLAGS SET' 01780011
016900 END-EVALUATE. 01790000
017000**01800000
017100 6000-WRITE-ERROR. 01810000
017200**01820000
017300 EVALUATE DVCB-RETURN-CODE 01830000
017400 WHEN 20 01840000
017500 DISPLAY 'DV SERVER NOT AVAILABLE' 01850000
017600 WHEN 32 01860000
017700 DISPLAY 'CONNECTION HANDLE NOT FOUND ON THIS SERVER' 01870000
017800 WHEN 36 01880000
017900 DISPLAY 'REQUEST MADE WHILE CONNECTION IN WRONG STATE' 01890000
018000 WHEN 40 01900000
018100 DISPLAY 'ROW DOES NOT FIT INTO RECEIVE BUFFER' 01910000
018200 WHEN 44 01920000
018300 DISPLAY 'RECV REQUEST TIMEOUT WAITING FOR DATA' 01930000
018400 WHEN 60 01940000
018500 DISPLAY 'SQL STATEMENT SEND LENGTH NOT SET' 01950000

72 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

Index

A
applications

connecting an application to a data source 4, 35

D
documentation changes 1

J
JDBC

APIs 29
buffering data 23
Connection properties 5
debugging and tracing 20
MapReduce 27
Parallel IO 24
performance 23

JDBCWeb Services
Error handling 19

O
ODBC 35

S
sending comments to IBM xiii
summary of changes 1

W
what's new 1

Index 73

74 IBM Data Virtualization Manager for z/OS: Data Virtualization Manager Developer's Guide

IBM®

SC27-9302-00

	Contents
	Figures
	Tables
	About this information
	Abstract for IBM Data Virtualization Manager for z/OS Developer's Guide
	How to send your comments to IBM
	If you have a technical problem

	Chapter 1. Overview
	What's new in IBM Data Virtualization Manager for z/OS Developer's Guide

	Chapter 2. Spark SQL data access: JDBCThe JDBC driver V3.1
	Connecting to a data source using JDBC
	JDBC connection properties
	Error handling
	Debugging and tracing
	Connecting to a DRDA database server

	JDBC performance management
	Buffering data
	Parallel IO
	MapReduce

	JDBC driver APIs

	Chapter 3. The ODBC driver V3.1
	Connecting an application to a data source using ODBC
	Accessing Double Byte Characters
	ODBC connection properties
	Connection pooling
	Optimized fetch

	Chapter 4. DS Client high-level API
	Load modules
	Configuring access to DS Client for CICS
	AVZCLIEN
	DVCB control block
	DS Client requests
	OPEN
	SEND
	RECV
	CLOS
	Idle timeout

	API return codes
	DS Client configuration
	Batch program execution
	Example: Using Data Virtualization Manager in a COBOL program

	Index

